High-Field Multinuclear Magnetic Resonance Studies of Hexamethyldisilane in Liquid and Solid Phases

D. W. Aksnes¹,a and L. Kimtysb

¹Department of Chemistry, University of Bergen, N-5007 Bergen, Norway and bDepartment of Physics, Vilnius University, Vilnius 2734, Lithuania

Many spherical molecules, e.g. adamantane and tert-butyl compounds, are known to exist in an orientationally disordered (plastic) crystalline phase of high symmetry, usually cubic, immediately below the melting point.¹,² There are also many examples of less symmetrical molecules which exhibit orientationally disordered phases, e.g. the tetrahedral molecules pivalic acid, hexamethylethane and hexamethyldisilane.¹,² These elongated molecules also form cubic high-temperature phases with very considerable disorder. At lower temperatures transitions usually occur to one or more ordered phases of lower symmetry, where the molecules become more closely packed and the crystals exhibit normal mechanical properties. The different solid phases are usually designated I, II, III in order of decreasing temperature. In the ordered phase anisotropic molecular motions take place, whereas in the disordered and liquid phases overall molecular tumbling and translational diffusion occur.

In this paper we present the results of high-field ¹H, ²H, ¹³C and ²⁸Si linewidth, relaxation and self-diffusion measurements of the liquid and solid phases of hexamethyldisilane (HMDS). This compound exhibits a disordered phase between the phase transition at 221.7 K and the melting point at 287.7 K.² X-Ray studies have established that the disordered phase (solid I) is body-centred cubic with two molecules per unit cell and a lattice constant (a) of 0.847 nm at 273 K³ and 0.843 nm at 225 K.⁴ The entropy of fusion is low compared with the entropy of transition: ΔSf = 1.25 R and ΔSf = 5.25 R.³

In an early ¹H linewidth study on HMDS it was concluded, on the basis of the motionally averaged second moment, that the methyl reorientation (C₃ motion) is occurring at a faster rate than the molecular reorientation about the Si–Si axis (C₄ motion) in solid II. Two later low-field ¹H relaxation studies (T₁ and T₂) are based on the same assumption.⁵,⁶ However, neither ¹H second-moment nor relaxation-time measurements can distinguish between C₃ and C₄ motions of a C(CH₃)₃ or Si(CH₃)₃ group with tetrahedral geometry since the dominating intra-CH₃ contributions will be the same for both motions. In the case of ¹H, ¹³C and ²⁸Si NMR, however, different situations occur for C₃ and C₄ motions, thus making a unique assignment of these motions possible in favourable situations.⁸,¹⁰ Another complicating factor when interpreting the low-field ¹H NMR data is the unknown contribution from intermolecular interactions. This contribution is negligible for ¹H and ¹³C at high field and ¹H at all fields.

Previous NMR relaxation and radio-tracer studies⁵,⁶,¹²,¹³ on HMDS have shown that the translational diffusion rate is relatively high in the disordered phase. However, there is a significant difference in the self-diffusion...
fusion coefficients (D) obtained from the two techniques. In this context it should be mentioned that radio-tracer and pulsed field-gradient (PFG) methods give D directly, whereas the evaluation of D from T_1 relies on a model framework for the molecular dynamics. Further, considerable discrepancies exist in the reported activation energies of the rotational and translational motions of HMDS. It therefore seemed to be a reasonable approach to study the dynamics of the liquid and solid phases of HMDS in greater detail using high-field multi-nuclear NMR.

Experimental

Hexamethyldisilane (HMDS), obtained from Aldrich, was transferred into the inner tube (3 mm o.d.) of a special 5 mm coaxial Wilmad insert, degassed by four freeze–pump–thaw cycles and sealed under vacuum. The outer 5 mm o.d. tube contained a small amount of deuterochloroform or DMSO-d$_6$ which served as external 2H lock signal source for the lower or higher temperatures, respectively. Two samples were also prepared in 5 mm and 10 mm o.d. NMR tubes using the same procedure as above.

The 1H and 13C measurements were carried out on Bruker AC 200 F and AM 400 WB spectrometers at 200.13 and 400.13 MHz (1H) and at 50.32 and 100.62 MHz (13C). Both spectrometers were equipped with a Z-shielded 5 mm probe-head. The 3 mm sample was used for all 1H relaxation and self-diffusion measurements. The 13C relaxation and self-diffusion measurements were carried out on the 3 mm sample for the liquid phase and the 5 mm sample for the solid phases. The 2H and 29Si relaxation measurements were performed on the Bruker AM 400 WB spectrometer at 61.42 and 79.50 MHz, respectively, using the 5 mm sample for the liquid phase and the 10 mm sample for the disordered (solid I) phase. 1H composite pulse decoupling with a Waltz-16 sequence was used when measuring the 13C, 2H and 29Si spectra. All measurements on the 5 and 10 mm samples were done without an NMR lock.

The 90° transmitter pulses were carefully calibrated for all nuclei, samples and temperatures (ca. 7–26 µs). The field gradients were generated by a Bruker BGU gradient unit. The gradient pulses were shaped and the strengths calibrated ($G \leq 0.86$ T m$^{-1}$), according to procedures described by the Bruker company. The measured gradient strengths (G) agreed within experimental error with the values obtained indirectly from the reported self-diffusion constant of water. The sample temperature was regulated and stabilized to within ±0.5 K by means of a Bruker B-VT 1000 temperature-control unit. The heating air flow rate was 10 l min$^{-1}$.

The T_1 times were measured by standard inversion–recovery ($180^\circ - \tau - 90^\circ - T_m$), typically using 16 values of τ and the recycle delay $T \geq 5T_1$. The diffusion coefficients were measured using the well established pulsed field-gradient (PFG) technique ($T - 90^\circ - \tau - \delta - \tau - 180^\circ - \tau - \delta - T_m$), where $T \geq 5T_1$ and δ is the length of the gradient pulses. By keeping the total time between the RF pulses $\Delta = 2\tau + \delta$ constant the signal height of the Fourier transformed echo may be written $A = const \times \exp(-\gamma^2 G^2 D^6 \Delta/3)$. The $const$ term contains a factor $\exp(-2\Delta/T_2)$ which severely attenuates the measured echo for short spin–spin relaxation times T_2. The experiments were performed with $\Delta = 100$ and 8 ms for the liquid and solid I phases, respectively. The gradient pulse length (δ) was decremented in 1 ms steps between 40 ms and 1 ms. The estimated errors of T and D are 3 and 6%, respectively.

Results and discussion

NMR linewidths and self-diffusion. The 1H, 2H and 13C linewidths, $\Delta \nu_{1/2}$ (full width at half-height) of solid HMDS are shown in Fig. 1. The measurements were made by both cooling and warming the sample, and no hysteresis was observed. The linewidth of the 1H resonance in solid II (ca. 18 kHz) is in accordance with the value found for tert-butyl groups narrowed by $C_3 + C_4^*$ reorientations. 1H composite pulse decoupling reduces the 13C resonance in solid II to some extent. The relatively sharp NMR resonances in solid I show that the intramolecular dipolar and quadrupolar interactions and most of the intermolecular dipolar interactions are averaged out by the overall tumbling motion in this phase. The remaining heteronuclear 1H–13C dipolar interactions are removed by proton decoupling. The observed line-narrowing of the 1H resonance (34–3900 Hz) is thus caused by molecular self-diffusion with activation energy 42 kJ mol$^{-1}$ (vide infra). By contrast, the observed line-narrowing of the 2H signal (6–45 Hz) is attributed to rotational aver-

![Graph](image_url)
aging of the intramolecular electric quadrupole interaction by the overall tumbling motion.

It is estimated that the intermolecular $^{13}\text{C}-^{13}\text{C}$ and $^{13}\text{C}-^{29}\text{Si}$ dipolar interactions give rise to a rotationally averaged ^{13}C linewidth of approximately 32 Hz for a body-centered cubic structure with a lattice constant a of 0.847 nm. The observed ^{13}C linewidth is 32 Hz at 243 K but appreciably wider below, and narrower above, this temperature (4–130 Hz). The relatively broad lines and long T_1 times at low-temperatures might indicate a slightly ordered structure. The additional line-narrowing which occurs in the high-temperature region of solid I is attributed to molecular self-diffusion. The E_d value (28 kJ mol$^{-1}$) therefore largely reflects the translational diffusion process.

The ^1H linewidth data of HMDS were converted to T_2 values, assuming a Lorentzian line-shape, according to the relation

$$T_2 = 1/\pi\Delta v_{1/2}$$

(1)

The corresponding τ values, the average time between diffusional jumps, were then obtained using the simplified Wolf17 equation for a monovacancy diffusion mechanism in a body-centred cubic lattice:

$$1/T_2 = 1.40M_{2g}\tau$$

(2)

where M_{2g} is the rotationally averaged second moment. The mean value of M_{2g}, evaluated from low-field T_ms measurements3 is 3.11×10^9 s$^{-2}$. The τ values have been deduced from the experimental linewidths using eqns. (1) and (2). The average time between diffusional jumps at the melting point $\tau_m = 1.7 \times 10^{-11}$ s. This value is at the extreme value of the range reported for body-centred cubic solids (1.2 ± 0.6) x 10$^{-12}$ s. The more loosely packed body-centred cubic crystals are stable at relatively higher temperatures than the closer packed face-centred cubic structure. It has been reported18 that the translational jump frequencies of disordered crystals at the melting point are characteristically a factor of five greater for body-centred cubic than for face-centred cubic solids, and independent of the degree of orientational disorder. The motionally averaged NMR resonances of body-centred cubic solids might therefore be narrower than for face-centred cubic solids. However, the NMR linewidths of HMDS are comparable to those observed for the disordered face-centred cubic solids of pivalic acid,19 tert-buty1 chloride20 and tert-butyl bromide.10

The value of τ is related to the self-diffusion coefficient D through the Einstein relationship

$$D = \langle r^2 \rangle / 6\tau$$

(3)

where $\langle r^2 \rangle$ is the mean-square-jump distance which can be put equal to (3/4)πa^2 for a body-centred cubic lattice. The values of D deduced from the linewidth data are shown in Fig. 2.

We have also measured the self-diffusion coefficients in HMDS in the liquid and disordered phases using the PFG technique (Fig. 2). The corresponding activation en-
to sample crystallinity. Moreover, PFG and radiotracer methods, unlike NMR relaxation, involve a long time-scale observation of the diffusion process. Finally, for low entropy of fusion solids (<2.5 R), activation energies for the line-narrowing process are usually much lower than those of self-diffusion obtained from plastic deformation and radiotracer measurements.21

Spin–lattice relaxation. The 1H, 2H, 13C and 29Si T_1 values were measured for the liquid and solid phases of HMDS. 2H and 29Si T_1 values of solid II were not measured, however, owing to complex absorption profiles and/or poor signals. Semi-logarithmic plots of T_1 versus inverse temperature are shown in Figs. 3–6. The large discontinuities in the 1H and 13C T_1 values at the transition point imply, as expected, that different motions dominate the spin–lattice relaxation in the two phases. The marked discontinuity in T_1 of the investigated nuclei at the melting point, followed by a significant change in the activation energy, shows that the rate and possible type of reorientation are significantly affected by the melting process (vide infra).

Solid II. In this phase only internal C$_3$ and C$_3'$ reorientations with correlation times τ_m and $\tau_{m'}$, respectively, modulate the dipolar 1H and 13C relaxation. The negative slopes of the 1H and 13C T_1 curves in this phase imply that the extreme narrowing condition prevails. If only one motion dominates, the relevant relaxation rates are given by eqns. (4) and (5)9,10,19

\[
\frac{1}{T_1(\text{H})} = \left(\frac{\mu_0}{4\pi} \right)^2 A_H^2 h^2 (r_{HH}^{-6} + 3r_{HH}^{-6}) \tau_i
\]

\[
\frac{1}{T_1(\text{C})} = \left(\frac{\mu_0}{4\pi} \right)^2 B_H^2 h^2 r_{CH}^{-6} \tau_i
\]

\[
\text{Fig. 3. } ^1\text{H } T_1 \text{ relaxation times of HMDS versus reciprocal temperature measured at 200.13 MHz (filled symbols) and 400.13 MHz (open symbols).}
\]

\[
\text{Fig. 4. } ^{13}\text{C } T_1 \text{ relaxation times of HMDS versus reciprocal temperature measured at 50.32 MHz (filled symbols) and 100.62 MHz (open symbols).}
\]

where $\tau_i = \tau_m$ or $\tau_{m'}$ as appropriate, r_{HH} is the inter-nuclear H–H separation within a CH$_3$ group, r_{HH} is the distance between the centres of the equilateral triangles formed by the three hydrogen atoms of each methyl group and r_{CH} is the C–H bond length. If all carbon and silicon atoms of HMDS have tetrahedral geometry $A = 9/4$ for both motions (and not different as claimed by Albert et al.), whereas $B = 16/9$ for the C$_3$ motion and $B = 32/27$ for the C$_3'$ motion. When evaluating eqn. (4) we have approximated the intra CH$_3$–CH$_3$ interactions by assuming that the protons in each CH$_3$ group are located at the centre of the H–H–H triangle. As a consequence of this approximation C$_3$ rotations will have no effect on the r_{HH} vector and hence the $3r_{HH}^{-6}$ term in eqn. (4), which should be skipped when the relaxation is governed by this motion. The C–H and Si–C bond lengths (r_{CH} and r_{SiC}) are assumed to be 0.110 and 0.188 nm,22 giving $r_{HH} = 0.180$ nm and $r_{HH} = 0.367$ nm, respectively. It is then readily calculated that the intra CH$_3$–CH$_3$ interactions modulated by the C$_3'$ motion only contribute 4% to the relaxation rate.

A minimum in $T_1(\text{H})$ at 25 MHz is observed around 87 K.6 Although this minimum is shifted towards higher temperatures at high field it is not observed in the investigated temperature range (155–220 K) of solid II (Fig. 3). This observation is consistent with the negative slopes of the 1H and 13C T_1 curves, showing that all T_1 values are on the high-temperature side of the minimum. By using linear regression on the 1H and 13C T_1 data of Figs. 3 and 4 activation energies of 7.1 and 7.0 kJ mol$^{-1}$ were obtained, respectively, in good agreement with the early result of Albert et al.6 (6.5 kJ mol$^{-1}$) but inconsistent with the value reported by Chadwick et al.7 (9.2 kJ mol$^{-1}$). The latter value was, however, obtained from a very short linear range of the Arrhenius plot. This activation energy must be assigned either to the methyl rotation (C$_3$ motion) or the rotation about the Si–Si axis (C$_3'$ motion). We have thus calculated the corresponding
correlation times using eqns. (4) and (5). The best agreement between the \(^1\!\!H\) and \(^{13}\!\!C\) data is obtained for the \(C_i\)' motion in opposition to the assignment made on basis of the early \(^1\!\!H\) low-field data.\(^6\)\(^7\) As pointed out in the introduction, however, it is not possible to distinguish between \(C_3\) and \(C_i\)' motions using only \(^1\!\!H\) data. The relatively low activation energy observed for the low-temperature motion of HMDS compared to hexamethylenethane\(^8\)\(^9\) and other \(t\)-tert-buty1 compounds\(^10\)\(^\text{20}\)\(^\text{24}\)\(^\text{25}\) (12–15 \text{kJ mol}^{-1}) probably reflects reduced interactions between the \(Si\)(\(CH_3\))\(_3\) groups, in contrast to the \(t\)-tert-buty1 groups, on different ends of the molecule owing to longer bonds. On the other hand, one might argue that the longer bonds in HMDS as compared to hexamethylenethane will reduce the interactions between the methyl groups, and hence also cause a reduction in the activation energy of the \(C_i\) rotation.\(^6\)

A maximum is observed for \(T_1(\!\!H)\) at low field owing to the onset of the \(C_i\) motion (or alternatively \(C_i\)' motion) with activation energy 30–31 \text{kJ mol}^{-1}\(^6\)\(^7\) Since the maximum is shifted to higher temperatures with increasing field strength, it is not observed at 200 and 400 MHz before the melting process intervenes.

Liquid and solid I. The dipolar and quadrupolar \(^1\!\!H\), \(^{13}\!\!C\) and \(^2\!\!H\) spin–lattice relaxations in these phases are governed by the overall tumbling motion as well as internal \(C_3\) and \(C_i\)' reorientations. The negative slopes of the \(T_1\) curves in the liquid and disordered phases imply that the extreme narrowing condition prevails. The relevant relaxation rates are therefore given by eqns. (6)–(8)\(^19\)

\[
\frac{1}{T_1(\!\!H)} = \left(\frac{\mu_0}{4\pi} \right)^2 3\gamma_1^2 h^2 (6\tau_{\text{eff}}^{-1})^{\!\!H} + 3\gamma_{HH}^2 h^2 \tau_{\text{eff}}^{\!\!HH}
\]

\[
\frac{1}{T_1(\!\!C)} = \left(\frac{\mu_0}{4\pi} \right)^2 3\gamma_{C}^2 h^2 2\gamma_{CH}^2 h^2 \tau_{\text{eff}}^{\!\!CH}
\]

A knowledge of the quadrupolar coupling constant of the \(CH_3\)\(^2\!\!H\) group is necessary in order to calculate the correlation times from the observed \(T_1(\!\!H)\) values with eqn. (8). \(\chi\) Values of 180 and 191 kHz have been obtained for the liquid and solid phases, respectively, by substituting the \(T_1(\!\!C)\) and \(T_1(\!\!H)\) values at the melting point, obtained from linear regression, into eqns. (7) and (8). These values are somewhat larger than those reported for \(t\)-tert-buty1 compounds (163–174 kHz)\(^10\)\(^\text{20}\)\(^\text{24}\)\(^\text{25}\) but well within the range found for \(C\)-\(^2\!\!H\) groups (150–250 kHz).\(^26\)

The \(^1\!\!H\), \(^{13}\!\!C\) and \(^2\!\!H\) \(T_1\) data of solid I yield practically identical activation energies of 7.0, 7.1 and 6.9 \text{kJ mol}^{-1}, respectively. The previously reported activation energy (\(\geq 6.3\) \text{kJ mol}^{-1})\(^6\)\(^7\) is not accurate, since an increasing contribution from intermolecular relaxation, modulated by translational diffusion, resulted in a non-linear \(T_1\) against \(T^{-1}\) plot. The effective correlation times at the melting point deduced from the \(^1\!\!H\) and \(^{13}\!\!C\) \(T_1\) values, are also quite similar (2.4 and 1.4 ps, respectively) and well within the range reported for a series of related \(t\)-tert-buty1 compounds (0.9–4.2 ps)\(^10\)\(^\text{20}\)\(^\text{24}\)\(^\text{25}\). The comparable activation energies and rotational correlation times obtained from the appropriate interaction vectors of the \(^1\!\!H\), \(^{13}\!\!C\) and \(^2\!\!H\) nuclei suggest that the spin–lattice relaxation is dominated by near-isotropic overall tumbling in solid I.

The marked decrease in \(E_a\) for the \(^{13}\!\!C\)–\(^1\!\!H\) vector, from 7.1 \text{kJ mol}^{-1} in solid I to 5.8 \text{kJ mol}^{-1} in the liquid, presumably reflects an increasing contribution from the spin–rotation mechanism. By contrast, the activation en-
ergies obtained from the $T_1(1^H)$ and $T_1(2^H)$ data increase by 0.9 and 1.4 kJ mol$^{-1}$, respectively, when going from solid I to the liquid state, followed by a slight increase in $\tau_{\text{eff}}^{10^H}$ on melting. These results indicate, in accord with previous observations, that the molecular reorientations are slightly retarded by the melting process.

The temperature behaviour of the $T_1(29^Si)$ values is the opposite of that seen for the other nuclei, i.e. T_1 decreases with increasing temperature in both the liquid and solid I phases. This behaviour is attributed to a self-diffusion dominated relaxation mechanism with $\omega_{Si}^2 \tau \gg 1$, where τ is the average time between diffusion jumps. Indeed, by using the value of τ at the melting point of solid I, 1.7×10^{-7} s, deduced from the linewidth data, it follows that $\omega_{Si}^2 \tau = 85$. However, the non-linear T_1 curve seen in Fig. 6 implies that the intramolecular dipole–dipole interactions, modulated by molecular reorientations, make a significant contribution to the relaxation in solid I. Indeed, the observation that $T_1(29^Si)$ is approaching a maximum near the phase transition point shows that the latter mechanism is becoming the more important relaxation mechanism when the phase transition intervenes. $T_1(29^Si)$ is, by contrast, dominated by self-diffusion modulated relaxation at the high-temperature region of the liquid state. In fact, the three T_1 values at highest temperature yield an activation energy of ca. 15 kJ mol$^{-1}$, in excellent agreement with the value obtained from the self-diffusion measurements.

References

13. Lohmann, J. A. B. Personal communication, 1992, Bruker Spectrospin Ltd., Banner Lane, Coventry CV4 9GH, UK.

Received January 20, 1995.