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The first thermodynamic acidities and homolytic metal-hydrogen bond dissocia-
tion energies (BDE) of metal-protonated metallocenes in solution are reported.
The pK, of Cp*,OsH ™ in acetonitrile has been determined as 9.9+ 0.1 from
proton-transfer equilibrium measurements. For Cp*,RuH *, the pK, has been
estimated as 4.3 on the assumption that pK, differences in acetonitrile are straight-
forwardly related to differences in the reported heats of protonation of Cp*,Os
and Cp*,Ru in 1,2-dichloroethane. The pK, data are used in conjunction with
reversible oxidation potential data for the metallocenes to obtain metal-hydrogen
BDE values of 284 kJ mol ™' for Cp*,RuH * and 298 kJ mol ~! for Cp*,0OsH *,
respectively. The BDE value for Cp*,RuH" is essentially equal to that of

Cp,RuH " in the gas phase.

The metal-hydrogen bond remains one of the most im-
portant ‘functional groups’ in organotransition-metal
chemistry. Metal hydrides are commonly involved in sto-
ichiometric and catalytic reactions of great industrial im-
portance.'~ Knowledge about the metal-hydrogen bond
strengths are of crucial importance when such processes
are to be understood in detail.*"® The metal-hydrogen
bond can be envisioned to undergo cleavage either ho-
molytically [eqn. (1)] or heterolytically [eqns. (2) and
©))

The energy changes of reactions 1 and 2 are available
from the metal-hydride homolytic bond dissociation en-
ergy (BDE, defined in enthalpy terms) and pK,, respec-
tively.

M-H->M:' +H" 1
M-H->M- +H*+ 2
M-H->M* +H- (3)

Solution BDE*™"? and pKk,*!'"'>"-2° data for a variety
of metal hydrides, as well as heat of protonation data for
a series of neutral complexes,”'~%® have now been accu-
mulated, and allow for systematic trends arising from dif-
ferences in the nature of the metal and ancillary ligands
to be assessed to some extent.
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The decamethylmetallocenes Cp*,Ru and Cp*,Os
(Cp* =17 - CsMes) are known to undergo protonation at
the metal to give the cationic hydride complexes
Cp*,RuH " and Cp*,OsH *, respectively.?” Angelici and
coworkers have reported the heats of protonation
(AHyy) of the two metallocenes by trifluoromethane-
sulfonic acid in 1,2-dichloroethane (DCE).?! The heats of
protonation were AHyy = —79.5 kJ mol ™' for Cp*,Ru
and - 111.3 kJ mol ' for Cp*,0s. The 32 kJ mol ' dif-
ference between the two translates into the Os complex
being more basic than the Ru one by 5.5 pK, units in
DCE. As a solvent, DCE offers a clear advantage when
such measurements are performed because of its low ba-
sicity. This allows for the existence of species more acidic
than those that are stable in another solvent commonly
used for organometallic compounds, acetonitrile.>* Until
now, pK,(MH) (acetonitrile) and AHyy (DCE) data
have not both been available for one single compound.
As aresult of this lack of a common anchoring point, the
large body of available AH,,;; (DCE) data has not yet
been firmly related to the pK, (acetonitrile) scale, which
has been commonly used for the investigation of metal-
hydride acidity.'"'>'*"'® In this paper we provide solu-
tion (acetonitrile) pK, and BDE data for Cp*,RuH * and
Cp*,0OsH ™.




Results and discussion

Acidity measurements. The pK, of Cp*,OsH™ was deter-
mined by measurement of proton-transfer equilibria be-
tween Cp*,Os and PhNH,;*BF,” (pK,=10.6)*® in
acetonitrile [eqn. (4)].

ch
Cp*,0s + PANH,* 2 Cp*,OsH* + PhNH, @)

The equilibrium constant was determined from the in-
tegrated signal intensities in "H NMR spectra in aceto-
nitrile-d;. Separate resonances were observed for Cp*,0s
and Cp*,0OsH ", whereas the resonances due to PANH,
and PhNH;* could not be distinguished due to rapid
amine proton exchange.” The proton-transfer equilibrium
constant was estimated making the assumption that
[PhNH,] = [Cp*,0sH * ] from the overall mass balance,
and resulted in pK,(Cp*,OsH*)=9.9+0.1 (three mea-
surements, one standard deviation). These results are
consistent with a report® that triethylamine (pK, 18.5 in
acetonitrile)*® and pyridine (pK, 12.3),”® but not diphen-
ylamine (acetonitrile pK, not available; expected to be
considerably less basic than aniline) causes the deproton-
ation of Cp*,OsH " in dichloromethane.

We anticipated, on the basis of Angelici’s work,?! that
Cp*,Ru (5-6 pK, units less basic than Cp*,0s) would
not be sufficiently basic for acid/base equilibria to be in-
vestigated in acetonitrile. [Norton and co-workers found
that Co(CO),H, with pK, 8.3 in acetonitrile, underwent
partial deprotonation in the absence of added bases even
in carefully dried acetonitrile].!> This assumption was
corroborated by experiments, and it was seen that not
even p-CF;C,H,NH,*BF,  (pK, =8.6)"° caused detect-
able protonation of the substrate. In order to arrive at a
reasonable value for the pK, of Cp*,RuH *, we relate the
pK, difference in acetonitrile (ApK,) for Cp*,Os and
Cp*,Ru to the difference in heat of protonation in DCE
(AAHy,,) through pK,= - AAHy,,/2.301RT, or
ApK, = — AAHy;,,/5.70 kJ mol ! at 25°C. It is an un-
derlying assumption that AAS;,, =0 and that ion-pairing
effects play no role or are comparable for the two com-
pounds. The estimated pK, for Cp*,RuH ™" is then 4.3.%

Determination of M—H bond dissociation energies. Thermo-
chemical cycles of the type that was first introduced by

T This suggests that proton transfer to/from the metal centers
occurs relatively slowly, whereas proton transfer between ni-
trogen atoms takes place rapidly, in accord with previous ob-
servations.?’

* Rottink and Angelici have found?* that a nicely correlated plot
of pK, data for a series of nitrogen bases in acetonitrile vs. AH
for protonation of the same nitrogen bases in DCE has a slope
of 1.52 rather than the theoretically expected slope of 1.36.
The source of this deviation is not known; however, if this
empirical correlation is used, the pK, for Cp*,RuH " is pre-
dicted to be (9.9 - 7.6/1.52) = 4.9. The change in the predicted
pK, for Cp*,RuH " is therefore small (0.6 pK, units) due to
the modest differences in heats of protonation of Cp*,Ru and
Cp*,0s.

METAL-HYDRIDE BOND ENERGIES

Breslow®! employing electrode potential data have found
widespread use for the indirect determination of thermo-
chemical data that are not available by more direct meth-
ods.*?7** Equation (5) shows the relationship between the
BDE and pK, of a cationic metal hydride MH ", when
the oxidation potential of the metal hydride conjugate
base is known.!0-123°

BDE(MH*)=5.70pK,(MH*) + 96.48E, (M) +C  (5)

The magnitude of the constant term C depends on the
particular solvent and reference electrode used for the
measurements and equals 249 kJ mol ! when measure-
ments are performed in acetonitrile with the Cp,Fe/
Cp,Fe* (Fc) couple as the reference.'® The value for C
has been obtained by two different methods and gives
results that agree well with data obtained by other tech-
niques when reversible electrode potentials are avail-
able.'”

Figure 1 shows cyclic voltammograms for the oxida-
tion of Cp*,Ru and Cp*,0s (1.0 mM) in acetonitrile/
0.1 M Bu,N *PF,~ at a voltage sweep rate v=1.0Vs™'
(25°C, d=0.6 mm Pt disc electrode). The voltammo-
grams establish that compounds Cp*,Ru and Cp*,0s un-
dergo oxidations at £=0.122 and - 0.055 V vs. Fc, re-
spectively. (It has previously been reported that the
reversible, one-electron oxidations occur at 0.55 V vs.
SCE for Cp*,Ru’® and at 0.46 V vs. SCE for Cp*,0s,’’
both in dichloromethane). The reversible potentials are
taken as the midpoints between the cathodic and anodic
peak potentials. Repeated measurements on indepen-
dently prepared solutions were reproducible to within
+2 mV. A close inspection of the CV trace for Cp*,Ru
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Fig. 1. Cyclic voltammograms for the oxidation of Cp*,Ru
and Cp*,0s. Experimental conditions: 1.0 mM substrate in
acetonitrile/0.1 M  Bu,N*PF,~, Pt disc electrode
(d=0.6 mm), voltage sweep rate v=1.0 V s~ ', 25°C.
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reveals that the electrode reaction is not fully reversible in
the chemical sense. A minor, cathodic wave is seen at
E = -0.38 V vs. Fc on the reverse scan. The relative in-
tensity of this wave was greater at v=0.1 V s~ ', sup-
porting the notion that the wave is caused by a product
arising from a relatively slow (on the measurement time
scale) reaction of Cp*,Ru’" in acetonitrile. The nature of
this process has not been further investigated, but we sus-
pect that the product may be Cp*,Ru(NCMe)>*, pro-
duced either by solvent-assisted*® oxidation or dispropor-
tionation of the cation radical. The product wave was not
detected in dichloromethane. No analogous wave was
seen during the oxidation of Cp*,0s, even at sweep rates
as low as 0.1 Vs~ ..

The BDE(MH *) data can now be determined from
eqn. (5) for M = Cp*,Ru (284 kJ mol ') and Cp*,0s
(298 kJ mol~'). Table | summarizes the heat of proto-
nation, pK,(MH"), E_,(M), and BDE(MH ") data.

A few estimates of M—H BDEs are available for or-
ganoruthenium hydrides. Using the thermochemical cycle
[eqn. (5)] we have earlier estimated the Ru—-H BDE for
CpRu(CO),H to be 272 kJ mol ~';'® estimates of Ru-H
BDEs for CpRu(PR,),(H)." derivatives depend on as-
sumptions made for conversions of pK, data from one
solvent to the other but fall in the approximate range 300-
320 kJ mol~'."*!* The gas-phase Ru-H BDE of the
unmethylated ruthenocene hydride Cp,RuH™ has been
estimated first as 331+21 kJ mol™ ' by ion-cyclotron
resonance measurements,’® but was later refined to
271 + 21 kJ mol~'.” Gas-phase and solution-phase BDE
data for organic compounds RH are usually quite similar,
since solvation enthalpies of RH and R’ species tend to
cancel and the enthalpy of solvation of H* amounts to
only ca. 4 kJ mol~'.** We therefore conclude that be-
cause bond-energy differences are well within the experi-
mental uncertainties, the Ru—~H BDE of Cp,RuH " is not
significantly different from that of Cp*,RuH *. It has been
previously seen that permethylation of the Cp ring leads
to a slight increase in Cr-H BDEs from CpCr(CO);H
(257 kJ mol ') to Cp*Cr(CO),H (261 kJ mol ').° One
might have anticipated a somewhat destabilizing effect
arising from permethylation of ruthenocene because pro-
tonation at the metal center forces a bending of the planar
neutral sandwich complex to give a ‘bent sandwich’ cat-
ion (Scheme 1). The permethylation of the ring would
introduce a steric repulsion disfavoring the bent structure.
However, the experimental data suggest that this is not
the case. Steric repulsions were previously seen'? to de-

Table 1. Thermodynamic data for some metallocene derivatives.

M*—H

T
& &

Scheme 1

stabilize considerably the M—H bonds in Tp*M(CO);H
relative to TpM(CO);H M=Mo, W; Tp=
hydridotris(pyrazolyl)borate; Tp* = hydridotris(3,5-dim-
ethylpyrazolyl)borate).

In summary, we have reported the first pK, and BDE
data for protonated metallocenes in solution. These data
will serve as an anchor for the determination of absolute
BDE values for a number of metal hydrides for which
heat of protonation data are already available.*'

Experimental

All manipulations involving organometallic compounds
were carried out under an atmosphere of purified nitrogen
or argon. Acetonitrile was distilled first from P,O5 and
then from CaH,, and acetonitrile-d; was freshly distilled
from CaH,. Acetonitrile containing 0.1 M Bu,N*PF,~
as the supporting electrolyte was used as solvent for the
electrochemical measurements and was passed through a
column of active neutral alumina before use to remove
water and protic impurities. The electrolyte was freed of
air by purging with solvent-saturated, purified argon, and
all measurements were carried out under a blanket of sol-
vent-saturated argon.

Electrochemical measurements were performed with an
EG&G-PAR model 273 potentiostat/galvanostat driven
by an external HP 3314A sweep generator. The signals
were fed to a Nicolet 310 digital oscilloscope and pro-
cessed by an on-line personal computer. The working
electrode was a Pt disc electrode (d=0.6 mm), the
counter-electrode was a Pt wire, and the Ag wire refer-
ence electrode assembly was filled with acetonitrile/
0.01 M AgNO,/0.1 M Bu,N*PF, . The reference elec-
trode was calibrated against Cp,Fe, which is also used as
the reference in this work. The positive-feedback iR com-
pensation circuitry of the potentiostat was employed; the
separation of anodic and cathodic peaks for the Cp,Fe
oxidation was 59-61 mV in acetonitrile at a voltage scan
rate v=1.0 Vs .

MH™* —AH(MH™)/kJ mol ™" pK,(MH™) E,(M)/V vs. Fc BDE(MH™)/kJ mol ™"
Cp*,RuH™ 79.5 4.3 0.122° 284

Cp*,0sH* 111.3 9.9 —0.055° 298

Cp,RuH” 2717

? Gas-phase measurements from Ref. 7.
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'"H NMR spectra were recorded on a Varian-Gemini
200 instrument. Chemical shifts are reported in ppm rela-
tive to tetramethylsilane, with the residual solvent proton
resonance as internal standard (3 = 1.93 for acetonitrile-
ds).

Cp*,Ru and Cp*,0s were kindly provided by Profes-
sor Angelici. PhANH,*BF,” was prepared from freshly
distilled PhNH, and HBF,-Et,O in ether.

Determination of the pK, of Cp*,0s in acetonitrile-d;. A
solution of PhNH,"BF,” (ca. 1 mg) and Cp*,0s (3-
4 mg; saturated solution) in acetonitrile-d; (1 mL) was
filtered through celite and transferred to an NMR tube
which was equipped with a ground-glass joint. The tube
was attached to the vacuum line and sealed under
vacuum. The '"H NMR spectrum showed that the proton-
transfer equilibrium [eqn. (4)] was established, and the
pK, of Cp*,OsH" was determined from eqn. (6).

ApK,=pK,(MH*)-pK,(baseH*)=
log([base][MH * ]/[baseH* ] [M]) 6)

Separate signals due to Cp*,0s (8 =1.60, Cp*) and
Cp*,OsH™ (8 =1.96, Cp*; —15.5, OsH) were observed.
Owing to rapid proton transfer involving PhNH, and
PhNH, ", an averaged spectrum was observed. The as-
sumption was made that [PhNH,] = [Cp*,OsH * ]. Mea-
surements on three independently prepared solutions re-
sulted in ApK,=0.7+0.1. Taking pK,(PhNH,")=10.6
(Ref. 6) results in pK,(Cp*,OsH")=9.9+0.1.
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Council for Science and the Humanities, NAVF (Stipend
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Note added in proof. The interpretation of the minor peak
in the cyclic voltammogram of Cp*,Ru as arising from
the reduction of Cp*,Ru(NCMe)** has been confirmed
by a recent report on the electrochemistry of Cp*,Ru and
analogues.*?
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