Rutile-Type Mn$_{1-x}$Sb$_{1+x}$O$_4$ Phases, 0 ≤ x ≤ 1/3, Synthesized by the Sol–Gel Technique

Gunnar Westin* and Jekabs Grins

Department of Inorganic Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden

Antimonates with the composition MSbO$_4$, where M is a trivalent atom with about the same size as Sb$^{5+}$, often exhibit disordered rutile-type structures [space group P4$_2$/mnm : M and Sb randomly distributed on 2(a), O on 4(f)]. Several meta-antimonates, MSb$_2$O$_6$, M = e.g. Mg, Zn, Co or Ni, are furthermore found to adopt the tri-rutile structure, with ordered M and Sb atomic arrangements [space group P4$_2$/mnm : M in 2(a), Sb in 4(e), O$_6$ in 4(f) and O$_{11}$ in 8(j)] and a trebled c-axis.

MnSb$_2$O$_6$ is reported to exhibit several structures. Byström et al. found that heating MnSb$_2$O$_6$, 7H$_2$O at 800°C for 4 h yielded a compound which exhibited a weak X-ray powder pattern of the rutile type. No tri-rutile reflections could be observed. However, taking into account the possibility that the tri-rutile superstructure reflections might go unobserved, the authors concluded that the compound formed was probably an MnSb$_2$O$_6$ rutile or an MnSb$_2$O$_6$ tri-rutile. Brandt reported that heat treatment of a mixture of Mn and Sb$_2$O$_3$ at 1000°C for 24 h yielded a diphasic material. One phase was identified as an orthorhombic Mn$_2$Sb$_2$O$_6$ modification with the columbite (FeNb$_2$O$_6$) type structure, and the other phase was of the rutile type. Evidence for a tri-rutile modification of MnSb$_2$O$_6$ has also been given by Sala et al. They heat-treated intimate mixtures of Sb$_2$O$_3$ and Mn(NO$_3$)$_2$·4H$_2$O in the proportion 2 : 1 at a final temperature of 900°C for 1 h. The X-ray powder pattern of the reaction product was interpreted as originating from a mixture of α- and β-Sb$_2$O$_4$ and a tri-rutile MnSb$_2$O$_6$ phase.

A trigonal modification of MnSb$_2$O$_6$ was obtained more recently by Scott by reacting MnO and Sb$_2$O$_3$ at 1100°C; it was designated γ-MnSb$_2$O$_6$ in order to distinguish it from the previously reported columbite- and trigonolite-type phases. The γ-MnSb$_2$O$_6$ structure was determined by Guinier-Hägg X-ray powder diffraction data [space group P321, Z = 3, a = 8.8054(4) Å and c = 4.7229(4) Å]. The structure has subsequently been confirmed and more accurately determined by Reimers et al. from neutron powder diffraction data. Vincent et al. reported the structure of a trigonal modification of MnSb$_2$O$_6$ with space group P3, at approximately the same time as Scott. The structure was determined by single-crystal X-ray diffraction, and the modification was designated β-MnSb$_2$O$_6$. The modification is, however, very likely identical with γ-MnSb$_2$O$_6$, considering the nearly identical synthesis conditions, cell parameters and atomic positions.

A rutile phase of the MnSb$_2$O$_6$ composition has not been reported, despite the fact that FeSb$_2$O$_4$ and CrSb$_2$O$_4$ adopt rutile structures, and the radius for Mn$^{2+}$ (HS), 0.65 Å, is very similar to the radii of Fe$^{3+}$ (HS), 0.65 Å, and Cr$^{3+}$, 0.62 Å.

The present paper describes the preparation of rutile-type Mn$_{1-x}$Sb$_{1+x}$O$_4$ phases, with 0 ≤ x ≤ 1/3, using the sol–gel method. The phases have been characterized by their X-ray powder patterns, and the crystal structure of Mn$_{29}$Sb$_{45}$O$_{94}$ has been refined from X-ray powder diffraction data by the Rietveld technique.

* To whom correspondence should be addressed.
Experimental

Gels with Mn: Sb ratios of 2:1, 1.5:1, 1:1, 1:1.25, 1:1.5, 1:1.75, 1:2 and 1:2.5 were prepared. The Mn:Sb atomic ratios correspond to x-values in Mn_{1-x}Sb_{x}O_{4} of −0.33, −0.20, 0.00, 0.20, 0.27, 0.33 and 0.43, respectively. The preparation route, which is described in detail in Ref. 8, comprised dissolution of Mn(OAc)_{2}4H_{2}O in methanol to form 0.33 M solutions. One equivalent of diethylamine per Mn was then added under stirring. The addition caused oxidation of Mn, as seen by the formation of dark brown solutions. After 15 min Sb(OnBu)_{3} was added and the stirring was continued for 15 min, generally yielding cloudy sois. Xero-gels were prepared by evaporating the solvent at 50–65°C from open beakers. X-Ray-amorphous oxide mixtures were obtained by heating the xero-gels to 370°C for 10 min, thus decomposing the organic part, which consisted mainly of acetato groups and loosely bound ligands. The oxide mixtures were then tempered at 740°C for 14 h in air. These temperatures were chosen with the aid of previous TG-DTA recordings.9

The preparations were characterised by their X-ray powder patterns, recorded with Guinier–Hägg cameras, CuKα radiation and Si as internal standard. The patterns were evaluated with a film-scanning system constructed at this department.9

Powder X-ray diffraction data of Mn_{2/3}Sb_{4/3}O_{4} were collected on a STOE STADI/P diffractometer, using CuKα radiation, a rotating sample in symmetric transmission mode and a linear position-sensitive detector covering 4.6° in 2θ. The detector was moved in steps of 0.2° in 2θ, yielding an average intensity from 23 measurements at each 2θ position. To reduce the background from Mn fluorescence a thin Al foil was placed in front of the detector. The data were collected in steps of 0.02°, and the 2θ-range 15–100° was covered over a period of 80 h, yielding an intensity of ca. 3600 counts for the strongest Mn_{2/3}Sb_{4/3}O_{4} peak.

Results

The powder patterns of samples heat-treated at 740°C/14 h all exhibited Bragg peaks from a rutile-type phase. No superstructure reflections indicating a tri-rutile cell were observed for these samples. The rutile peaks were in general broad, with half-widths increasing with Mn content, from 0.23° in 2θ at 2θ = 30° for x = 0.33, 0.43 to 0.87° for x = −0.33. In addition to the rutile reflections the powder patterns for x = 0.43 contained one weak peak associated with Sb_{2}O_{3}, and for x = −0.33, −0.20 several weak peaks attributable to Mn_{1−x}O and Mn_{x}O.

The variation of the cell parameters with composition is shown in Fig. 1, as a function of x in Mn_{1−x}Sb_{x}O_{4}. The a-axis shows an increase from 4.671(4) Å for MnSbO_{4} (x = 0) to 4.709(1) Å for Mn_{2/3}Sb_{4/3}O_{4} (x = 1/3), and is, within error, constant outside this compositional range. The c-axis exhibits a somewhat larger, non-linear, dependence on x. It increases with x, from c = 3.060(4) Å for MnSbO_{4} (x = 0), and reaches a maximum at x ≈ 0.25–0.33, with c = 3.126(7) Å for Mn_{2/3}Sb_{4/3}O_{4} (x = 1/3). The unit cell volume, V, shows a similar compositional dependence as the c-axis. The homogeneity range for the rutile Mn_{1−x}Sb_{x}O_{4} phase is found to be roughly 0 ≤ x ≤ 1/3, since the preparations with both x < 0 and x > 1/3 contained additional phases.

Fig. 1. Cell parameters versus x in Mn_{1−x}Sb_{x}O_{4}.
The cell parameter variation indicates, however, that the homogeneity range may be slightly larger (cf. discussion).

Additional heat treatment of the samples at 800°C/50 h yielded materials containing two or more phases: for x-values ≥ 0.27 the rutile phase and trigonal γ-MnSb₂O₆. The amount of γ-MnSb₂O₆ formed increased with increasing Mn content. In addition, the sample with x = 0.43 contained β-Sb₂O₄.

The X-ray powder patterns of compositions with x = 0.27, 0.33 and 0.43 contained, besides reflections associated with γ-MnSb₂O₆, reflections which could be ascribed to a tri-rutile unit cell. The strongest tri-rutile reflection, (101), exhibited a relative intensity of ca. 1, 6 and 7%, respectively, for the three compositions. These intensities are weaker than the calculated intensity, 15–20%, for a fully ordered tri-rutile, and the ordering of Mn and Sb atoms is thus found to be only partial.

The structure of Mn₂/₃Sb₂/₃O₄ (MnSb₂O₆) was refined, from its X-ray powder diffraction pattern, using a Rietveld package. In addition to the rutile peaks, the diffractometer data showed a few very weak Bragg peaks attributable to γ-MnSb₂O₆, which was included as a second phase in the refinements. The final refinement was carried out with a total of 16 parameters and the pseudo-Voigt profile function to model the peak shape (refined Lorentzian fraction = 0.93). The background was modelled by linear interpolation between 20 specified background points. Fig. 2 shows the fit between the calculated and observed patterns. A small misfit of unknown origin is observed at 2θ ≈ 52°. A list of atomic coordinates is given in Table 1. The e.s.d.'s are multiplied by 4.5 in order to account for serial correlation (Durbin–Watson d-index = 0.65). The negative displacement parameters clearly include a sample absorption component and are thus not measures of atomic vibrations.

The Mn:Sb atomic ratio in the rutile Mn₂/₃Sb₂/₃O₄ phase was checked with a Jeol 2000FXII transmission electron microscope equipped with a Link AN10000 energy-dispersive spectrometer and with γ-MnSb₂O₆ as standard for Mn and Sb. Twenty analyses of micro-crystallites yielded an Mn:Sb ratio of 0.99(5):2, in good agreement with the nominal one. The micro-crystallites were of the size 300–1000 Å. No amorphous phases could be observed to be present in the sample.

Table 1. Atomic coordinates for Mn₂/₃Sb₂/₃O₄: tetragonal, a = 4.709(1), c = 3.126(1) Å, z = 1, P4₁/mmm.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Position</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>B(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn, Sb</td>
<td>2(a)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1.1(1)</td>
</tr>
<tr>
<td></td>
<td>4(f)</td>
<td>0.3030(7)</td>
<td>0.3030(7)</td>
<td>0</td>
<td>-1.4(5)</td>
</tr>
</tbody>
</table>

R_p = 3.9; R_w = 5.1; R_i = 8.0; R_f = 4.9%. Goodness-of-fit index S = 0.96.

Discussion

The M–O distances, M = Mn, Sb, in the Mn₂/₃Sb₂/₃O₄ rutile phase are 2.02(2) (2x) and 2.04(1) Å (4x), with the average 2.03(1) Å. This average M–O distance agrees.
well with that in γ-MnSb₂O₆, 2.05 Å, as well as with an expected value of 2.04 Å, calculated from Shannon–Prewitt ionic radii for octahedrally coordinated Mn²⁺ in a high-spin (HS) state. The observed cell volume, 69.32 Å³, is somewhat smaller than the corresponding volume for γ-MnSb₂O₆, 70.42 Å³.

M₅Sb₂O₈ compounds with tri-rutile unit cells are generally found for M²⁺ ions (M = Zn, Mg, Fe, Co and Ni) with ionic radius \(r(M^{2+}) \leq 0.78 \) Å, similar to the ionic radius of Sb⁵⁺, 0.60 Å. For larger M²⁺ ions (M = Ca, Sr, Ba, Cd, Hg and Pb)], with \(r(M^{2+}) \geq 0.95 \) Å, the PbSb₂O₆ structure is adopted. The radius of Mn²⁺ (HS), 0.89 Å, occupies an intermediate position between the M²⁺ ion radii in the two types of structures. The rutile unit cell of Mn₅Sb₂O₈ is thus larger than the cells of other reported M³⁺Sb⁵⁺O₄ rutiles or M²⁺Sb²⁺O₈ trirutiles, all with cell volumes <67.5 Å³.

The unit-cell volume observed for MnSb₂O₄, 66.75 Å³, is similar to those of the rutiles FeSb₂O₄ and CrSb₂O₄, 66.01 and 64.03 Å³, respectively. This is in accordance with the similar radius of Mn³⁺ (HS), 0.65 Å, to the radii of Fe³⁺ (HS), 0.65 Å, and Cr³⁺, 0.62 Å.

The magnetic susceptibility data given in Ref. 1 for the related compounds M₅Sb₂O₈, M = Cr and Fe, and M₅Sb₂O₂, M = Co, Ni and Cu, are in agreement with the ionic models M³⁺Sb⁵⁺O₄ and M²⁺Sb²⁺O₄, respectively. Furthermore, no indications of order/disorder transitions for the M₅Sb₂O₄ compounds were found in that study. Assuming that all Sb ions have the oxidation number +5, the Mn ions in the Mn₅₋ₓSbₓ⁺ₓO₄ rutile phases have a mixed Mn²⁺–Mn³⁺ state, according to the formula Mn₂⁺Mn₁₋ₓSbₓ⁺ₓO₄. There is, however, the possibility that Sb is partly present as Sb⁵⁺ for high x-values in the structures, as well as the possibility that Mn may be partly present as Mn⁴⁺ for low x-values. In view of these possibilities, it is difficult to evaluate in more detail the unit-cell variation with x, as well as to specify accurate phase boundaries for the rutile phase.

We conclude that rutile phases with compositions Mn₅₋ₓSbₓ⁺ₓO₄, 0 ≤ x ≤ 1/3, are formed when corresponding Mn-Sb gels are heat-treated at 740°C for 1 h. The phases decompose at 800°C, accompanied by the formation of γ-MnSb₂O₆. Upon decomposition, a partially ordered tri-rutile phase is observed for x ≥ 0.27. Our findings are thus in agreement with previous studies, which indicated that Mn₅₋ₓSbₓ⁺ₓO₄ (MnSb₂O₄) can adopt a rutile or tri-rutile structure.

Acknowledgments. The authors thank Prof. M. Nygren for his valuable comments and great interest in this work, and Dr. G. Svensson for help with the transmission electron microscopy work. This work has been financially supported by the Swedish Natural Science Council.

References

Received November 27, 1992.