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Pyruvate decarboxylase (PDC) catalyzes the decarboxylation of pyruvate anion by a
factor of around 10", compared with the non-enzymic decarboxylation by thiamine,
under standard state conditions of 1 mM pyruvate and thiamine diphosphate (TDP),
pH 6.2. Free-energy diagrams constructed on the basis of earlier measurements for
the enzymic and non-enzymic reactions give some information on catalysis by PDC.
PDC stabilizes the reactant state preceding TDP addition to pyruvate by 76 kJ mol™!
and the transition state for the addition by 83 kJ mol~!. PDC stabilizes the reactant
state preceding decarboxylation (presumably a-lactyl-TDP) by 27 kJ mol~! and the
transition state for decarboxylation by 68 kJ mol™'. In addition, the free-energy
diagrams reveal a leveling of reactant-state free energies in the enzymic reaction
compared with the non-enzymic reaction, in that the former are nearly equal to each
other. The enzyme-bound transition-state energies are similarly leveled. The ener-
getic leveling of reactant states has been -noted by Albery, Knowles and their
coworkers in many enzymic reactions and termed ‘matched internal thermodynam-
ics.” They showed that the result would arise naturally (and inevitably) in the
‘evolution to perfection’ of enzymes, when the evolutionary process was treated by a
deterministic model. The critical assumption of this model was the validity of a
Marcus-type or Brgnsted-type linear free-energy relationship between rate and equi-
librium constants for reactions occurring wholly within enzyme complexes. Here a
completely stochastic simulation of molecular evolution, with no deterministic as-
sumptions, is shown to reproduce both ‘matched internal thermodynamics’ and the
‘matched internal kinetics’ or leveling of transition-state energies noted here. The

Albery—Knowles result is thus more general than might have been supposed.

Enzyme catalysis and free-energy diagrams

The essence of enzymic catalysis is the selective stabiliza-
tion of transition states with minimal stabilization of reac-
tant states.'? To appreciate the origins of the catalytic
power of a particular enzyme, a useful procedure is the
construction of and comparison of free-energy diagrams for
the enzymic reaction and a closely related non-enzymic
reaction; the frec-energy difference for individual states is
then graphically apparent. Furthermore, the comparison of
such free-energy diagrams should be revealing about mo-
lecular evolution. The non-enzymic reaction constitutes a
model for a very primitive stage of molecular evolution in
which an enzyme produces very little catalytic acceleration.
The enzymic diagram then shows the changes that have
come about in the course of molecular evolution.

* Presented as a plenary lecture at the third Symposium on Orga-
nic Reactivity in Goteborg, Sweden, July 7-12, 1991.
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Pyruvate decarboxylation by thiamine and by
pyruvate decarboxylase

Information is available for this procedure for the decar-
boxylation of pyruvate anion catalyzed by the thiamine-
diphosphate (TDP)-dependent enzyme yeast pyruvate de-
carboxylase (PDC).*’ The essential chemistry is depicted
in Scheme 1, taken from Ref. 7. Thiamine itself will pro-
mote the decarboxylation of pyruvate, but under condi-
tions of 1 mM pyruvate and pH 6.2, 25°C, the reaction has
a first-order rate constant of only 2x 107" s~!. Under
similar conditions, the first-order rate constant for PDC
action is around 60 s™', so that the enzymic acceleration is a
factor larger than 10", The average net transition-state
stabilization by PDC is thus around 69 kJ mol™".

In this paper, we consider both the specific origins of this
catalytic power for PDC, and some general features of the
free-energy barriers for PDC catalysis that are seen in other
reactions as well. Finally, we propose a stochastic model of
molecular evolution to account for the general features of
enzyme catalysis.
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Scheme 1. Decarboxylation of pyruvic acid by thiamine diphosphate.

Non-enzymic decarboxylation of pyruvate by
thiamine

The non-enzymic, thiamine-promoted decarboxylation of
pyruvate anion is understood from studies of Kluger, Chin
and Smyth? and Washabaugh and Jencks.*® In the follow-
ing discussion, we will assume that the relative free ener-
gies of species along the reaction paths for both the non-
enzymic and the enzymic reaction paths will be independ-
ent of whether the thiamine is phosphorylated. Thus we
can compare the thiamine-promoted non-enzymic reaction
with the TDP-dependent enzymic reaction. Washabaugh
and Jencks determined the rate constants for generation of
the thiamine C,-anion from the reactant thiamine, while
Kluger, Chin and Smyth synthesized the adduct of pyruvate
with thiamine (a reasonable model for the pyruvate-TDP
adduct) and studied the kinetics of its formation, reversion
to pyruvate and thiamine, and its decarboxylation. The
results of these studies permit a free-energy diagram to be
constructed for the non-enzymic reaction stages through
decarboxylation. The rate constants and free energies for
the non-enzymic reaction are given in the first part of
Table 1.

Enzymic decarboxylation of pyruvate anion

Alvarez et al.” deduced the microscopic rate constants for
the corresponding PDC-catalyzed reactions from *C and
B-2H isotope effects. PDC exhibits a complex mechanism of
hysteretic regulation, in which a molecule of the substrate,
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pyruvate anion or S, first binds reversibly into a regulatory
site of the enzyme E to give a complex SE. SE then under-
goes a unimolecular activating transition, or ‘switching’ to
generate the activated enzyme SE*. SE* then binds pyru-
vate into its catalytic site and decarboxylates an average of
10000 molecules of pyruvate (at full saturation) before an
‘off-switching’ transition occurs. Decarboxylation and
product-release events occur with about equal rate con-
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Fig. 1. Free-energy diagrams for the non-enzymic
decarboxylation of pyruvate by thiamine (upper curve) and for
the pyruvate-decarboxylase (PDC) catalyzed decarboxylation of
pyruvate with thiamine diphosphate (TDP) as cofactor (lower
curve). Both curves are for standard-state concentrations of

1 mM for pyruvate and TDP, pH 6.2 and 298 K. The rate
constants are given in Table 1.
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Table 1. Rate constants, standard-state® free energies of activation, free energies of reactant and transition states relative to the
apoenzyme assembly, and free energies of reactant and transition state stabilization for the enzymic and non-enzymic
decarboxylation of pyruvate at 298 K and pH 6.2.

Observed Standard-state AGHKkI mol™' G /kJmol™'?  AGg,/kd mol=t e
rate constants rate constants/s™"

Non-enzymic reactions

Deprotonation of TDP?

43x10°M ' s 6.8 x 1072 79.6

Transition state for deprotonation 79.6
Protonation of anion®
1.7x10"% s’ 1.7 10" 14.6

Thiamine anion 65.0

Specific-base catalyzed addition of thiamine to pyruvate
1.3M2g"! 21x10™" 133.9

Transition state for addition 1339

Specific-base catalyzed reversion of adduct
1.3M st 21x10°8 116.8

a-Lactylthiamine 174

Decarboxylation of a-lactylthiamine
50x107%s™! 5.0x 1075 97.5

Transition state for decarboxylation 114.6
Enzymic reaction
Binding of TDP (K = 23 uM)

E:TDP assembly -9.4

Reversible binding of pyruvate into
the regulatory site (K; = 8 mM)

SE —4.2
‘On-switching’ or activation of SE to SE*
0.49s7! 0.49 74.7

Transition state for activation 70.5

‘Off-switching’ or deactivation from SE* to SE
0.033s™! 0.033 81.4

Activated enzyme, SE* -10.9 75.9

Overall binding of pyruvate into the catalytic site
82x10*M's™! 82 62.0

Transition state for binding’ 51.1 82.8

Overall release of pyruvate from the catalytic site
120 s™! 120 61.1

E:a-lactyl-TDP assembly -10.0 271

Decarboxylation
640 s’ 640 57.0

Transition state for decarboxylation 47.0 67.6

aThe standard-state concentrations of pyruvate and TDP are taken as 1 mM. ®Gibbs free energy relative to apoenzyme + TDP + 2
pyruvate; differences in non-enzymic reactivity between thiamine and TDP are taken as negligible. °Gibbs free energy of stabilization
of each state by binding to the enzyme. “In 1 mM citrate buffers, the fastest route of deprotonation at pH 6.2 is by reaction with
hydroxide with the indicated rate constant. ®Reprotonation of anion by reaction with water. ‘The rate constant is taken to reflect
overall binding by pyruvate into the catalytic site and addition of the anion to pyruvate to give a-lactyl TDP in the catalytic site.
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stants. Table 1 gives the numerical values for the PDC rate
constants under standard-state conditions, along with the
corresponding free energies.

Fig. 1 portrays the two standard-state free-energy dia-
grams for the non-enzymic and enzymic reactions.

Transition-state stabilization and reactant-state
stabilization by pyruvate decarboxylase

Thiamine ionization. Kluger, Chin and Smyth® showed that
thiamine addition to pyruvate is specific-base catalyzed,
requiring the conjugate base of thiamine to be formed
before the onset of addition to the pyruvate carbonyl
group. The molecular assembly at G = 65.0 kJ mol~' on the
non-enzymic profile of Fig. 1 therefore consists of two
pyruvate molecules, apo-PDC, and the conjugate base of
TDP (TDP-cb). The assembly at —10.9 kJ mol™! on the
enzymic profile consists of activated enzyme SE*, with
TDP in the active site, and one molecule of free pyruvate.
Thus reaction (1) has AG® = —65.9 — 10.9 = —75.9 kJ

S + apo-PDC + TDP-cb = SE* (1)

mol~! or an equilibrium ratio of 10** for [SE*]/[apo-PDC]
at 1 mM standard state levels of S and TDP-cb. Note that
reaction (1) is a thermodynamic proposition, not a mecha-
nistic suggestion.

It is not known what ionization state the thiamine moiety
of TDP is in when the enzyme is in the activated form SE*,
although one hypothesis is that the regulatory activation
generates the conjugate base of TDP. If TDP is in fact in
the form of its conjugate base in SE*, then enzyme has
stabilized the conjugate base by about 76 kJ mol ', in effect
altering the pK, from around 18 in free solution* to around
5 in the PDC catalytic site.

Cofactor addition. The barrier succeeding the state SE* is
labeled ‘cofactor addition’ on the enzymic profile. This
corresponds to the supposition that the stable state beyond
the barrier, SE*S, contains the adduct a-lactyl- TDP. It is
not certain that this supposition is correct, and it is clear
that the barrier succeeding SE* describes several successive
events. At a minimum, the entry of pyruvate into the
catalytic site must be involved. For our discussion in this
paper, we shall adopt the hypothesis that entry of pyruvate
from solution to the catalytic site, any attendant protein
reorganization, and the covalent addition of the TDP-con-
jugate base to pyruvate all occur in the process represented
by the barrier following SE*.

It seems notable that the height of this barrier for the
enzymic reaction (62.0 kJ mol™!) is scarcely different from
the height of the corresponding barrier for the non-enzymic
reaction (68.9 kJ mol™"). Otherwise stated, PDC stabilizes
the transition state for TDP addition to the keto-group of
pyruvate by 82.4 kJ mol™! or only slightly more than the
75.9 kJ mol™' by which it stabilizes the reactant state for
this process. This could result from a reactant-like structure

STOCHASTIC MODEL FOR MOLECULAR EVOLUTION

for the addition transition state, in which case the enzyme
might be expected to stabilize the reactant state and a
reactant-like transition state by similar amounts of energy.
Kluger and Brandtl® have measured the $-°H secondary
isotope effect for the non-enzymic reaction. Decomposi-
tion of the adduct to thiamine and pyruvate yields an effect
of 1.10, while a pyruvate-thiamine anion-like transition
state should produce an effect® of 1.20 (three deuteriums in
both cases). This evidence indicates about 50 % bond for-
mation in the transition state for the non-enzymic reaction,
and offers no easy explanation as to why the enzyme should
stabilize reactant state and transition state to an equal
degree. An alternative proposition is that the stabilization
of TDP-cb is achieved primarily by placement of positive
charge near the anionic site of TDP-cb (adding to the effect
of the positive nitrogen of the thiazolium nucleus). If this
charge is equally effective in stabilizing the oxyanion being
formed as carbonyl addition proceeds, then the stabiliza-
tion free energy might be independent of transition-state
advancement and about equal for reactants, transition state
and products of carbonyl addition.

Decarboxylation. For the decarboxylation step, the situa-
tion is quite different. Here the reactant state (at —10.0 kJ
mol~! for the enzymic reaction and 17.1 kJ mol™! for the
non-enzymic reaction) is stabilized by a modest 27.1 kJ
mol~', while the transition state is stabilized by 114.6-47.0
= 67.6 kJ mol™'. The net free energy expressed in catalytic
acceleration is then 67.6-27.1 = 40.5 kJ mol ™', correspond-
ing to a factor of 10". This is entirely consistent with the
view of Lienhard and his coworkers!®!! that the enzymic
acceleration of thiamine-promoted decarboxylation derives
in part from the hydrophobic character of the enzyme
active site. The binding of a-lactyl-TDP, on this model, is
accompanied by development of strong binding interac-
tions to the enzyme, but these are opposed by the unfavor-
able free energy of incorporation of the zwitterionic adduct
into the hydrophobic active site. The net stabilization, the
algebraic sum of these opposing contributions, is around 27
kJ mol~!. In the transition state, the binding interactions
are preserved, but the partial discharge of the zwitterionic
dipole means the free energy of extraction of the transition
state from water into the hydrophobic active site is less
unfavorable than was true for the reactant state. Thus the
‘intrinsic’ binding energy of the transition state (in Jencks’
terminology'?) is more completely expressed in stabiliza-
tion of the transition state to the extent of about 40 kJ
mol ™.

General features of the free-energy diagrams

Two general aspects of the free-energy diagrams seem par-
ticularly worthy of note. These emerge as features not
unique to PDC action.

Consider the dispersion of reactant-state free energies in
the non-enzymic reaction and in the enzymic reaction. For
the non-enzymic reaction, the reactant-state free energies
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are (left to right) 0, 65, and 17 kJ mol™!: a mean of 27 kJ
mol~' with a mean deviation of 25 kJ mol™'. To express the
dispersion in relative terms, we consider its relation to RT
(2.5 kJ mol™'), which determines how it will affect the
reaction rate or relative populations of intermediates. The
dispersion of the non-enzymic reactant-state free energies
(as measured by the mean deviation from the mean) is thus
I0RT. In the enzymic reaction, the reactant free energies
are —0, -9, —4, —11, and —10 kJ mol': the mean is —7 kJ
mol~' with mean deviation of 4 kJ mol™' or around 1.5RT.
Thus in both absolute and relative terms, the enzymic
reaction exhibits a smaller dispersion of reactant-state free
energies, contracting a dispersion of 25 kJ mol~! (10RT) to
4 kJ mol™' (1.5RT). We conclude that the enzymic reaction
exhibits a leveling of reactant-state free energies.

Consider the transition-state free energies. For the non-
enzymic reaction, we have 80, 134 and 115 kJ mol™' for a
mean of 110 kJ mol™' with mean deviation of 20 kJ mol™'
(8RT). For the enzymic reaction, the values are 71, 52 and
47 kJ mol™": the mean is 57 kJ mol~', mean deviation 9 kJ
mol™' (ca. 4RT). Again, in both absolute and relative
terms, the enzymic reaction contracts the dispersion of
transition-state free energies from 20 kJ mol™' (8RT) to 9
kJ mol™' (4RT). We conclude that the enzymic reaction
exhibits a leveling of transition-state free energies.

The conclusion that enzymes produce a leveling of reac-
tant-state free energies has been previously drawn by Al-
bery, Knowles and their coworkers.'*!* The phenomenon
has been termed ‘matched internal thermodynamics.” As
Albery and Knowles have shown, it is predicted for highly
evolved enzymes by a straightforward model of biological
evolution at the molecular level.

The Albery-Knowles model of molecular evolution

The fundamentals of the widely known and appreciated
Albery—Knowles model of the evolution of enzymes ‘to
perfection’ have recently been reviewed." The model is
cast in terms of the simplest of enzyme mechanisms: one
substrate goes on to E to give EA, EA is converted into EP
(‘chemical step’) with an equilibrium constant K, and EP
dissociates. The model therefore has six rate constants, a
forward and reverse constant for each of the three steps.

The aim of the Albery—Knowles approach is to deter-
mine the relative values of the six rate constants that will
lead to a maximum flux per molecule of enzyme through
the enzymic reaction. Such a system will require the least
amount of enzyme for a given required level of product
metabolite; it will therefore, to the largest possible degree,
spare the host organism the energy expenditure of protein
synthesis. This in turn should confer a selective advantage
on the host organism, so that highly evolved organisms
should have many enzymes adapted to high flux.

The method used was algebraic. It was desired to obtain
the optimum values of the rate constants by setting d(flux)/
d(rate constant) = 0 for the six constants and solving the
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resulting system of equations. Constraints were required,
so the following were adopted.

(1) The equilibrium constant provided one constraint
(the ratio of the product of forward rate constants to the
product of reverse rate constants must equal the equilib-
rium constant).

(2) The rate constants for the E + A and E + P recombi-
nations were set to diffusional values, since these will obvi-
ously yield maximum flux, providing two more constraints.

(3) The concept of ‘uniform binding’ was introduced. For
primitive enzymes with minimal enzyme-ligand interac-
tion, it was imagined that all reactant and transition states
would bind with equal affinity. Thus the ratio of all rate
constants to the rate constant for EA dissociation were
made constant and the flux was optimized with respect to
this dissociation rate constant. The result provided the
fourth of the six constraints.

(4) The stage of evolution in which differential binding of
states occurs was now considered. A further constraint was
obtained by assuming eqn. (2) to be valid, where B = ca.

log k, = B log (k-/k_,) + log k¢ (2)

0.5. Here k, is the forward rate constant of the chemical
step, k_, is the reverse rate constant for the chemical step
and (k,/k_,) = Ki,. The relationship is the well-known
Brgnsted relation and the value of 0.5 for the coefficient is
rather a consensus value. The quantity log k3, the final
unconstrained quantity, defines the so-called intrinsic bar-
rier for the step. It is assumed to be changed in later stages
of evolution.

(5) The flux was optimized with respect to K, to obtain
the result for the differential-binding stage of evolution.
The treatment yields the simple finding, K, = 1, or
‘matched internal thermodynamics.’

Success of the Albery—Knowles model

The prediction of matched internal thermodynamics has
been spectacularly validated. Burbaum and Knowles" col-
lected around 20 cases of enzymic reactions where both
internal and external equilibrium constants were known.
The external equilibrium constants range from 1077 to 108
and the internal equilibrium constants range from 0.6 to 17,
with one outlier of 1600. It is fair to say that the predictions
of the Albery—-Knowles model have been shown to be
strongly congruent with experimental observations. The
model has correspondingly achieved wide and merited ac-
ceptance.

Critique of the Albery—Knowles model

We wish at this point to raise a question about the validity
of one assumption in the Albery—Knowles treatment,
namely the assumption that the reactions of enzyme-bound
species are governed by a linear free-energy relationship
between their rate and equilibrium constants, and that this



relationship applies to changes in rate and equilibrium con-
stants generated by mutations in enzyme structure in the
course of biological evolution. A mutation in enzyme struc-
ture can be considered a random event in which accidental
changes in the DNA code for the enzyme give rise to a new
structure with altered amino-acid composition in at least
one site. Consider the effect of such a mutation on the free
energies of three species which occur in succession along
the reaction path: EA, T,, and EM (or any other two
enzyme-bound reactant states and the transition state con-
necting them: see Fig. 2 and Chart 1 below). The free
energy of EA will be altered by the mutation because the
structure of the native enzyme E changes to the structure of
the mutant enzyme E’, thus EA mutates to E'A, and the
interactions between E and EA will be energetically differ-
ent from those between E’ and A in E'A. The sign and
magnitude of the change in free energy as EA mutates to
E'A will be determined by the change in structure from E
to E’, the nature of structure A, and the strength and
character of the E-A and E’-A interactions. The signs and
magnitudes of a long series of such changes in free energy,
corresponding to many successive events in molecular evo-
lution, will tend to have a random character because of the
large number of different ways the enzyme structure can be
mutated and the large number of ways in which A can
interact with E and E’. It seems very likely then that as a
long series of random mutations occurs in evolution, the
attendant changes in free energy at the EA stage will be
random too.

An exactly similar argument can be made that changes in
the free energy of the ET,, species and EM species will also
be random. Furthermore, and most importantly, it is likely
that there will be no correlation between changes in the free
energies at the EA, the ET,,, and the EM stages. If this is
correct, the linear free-energy relationship assumed in the
Albery-Knowles approach will be incorrect, for it assumes
that changes in (G—Gg,) Will always be a constant frac-
tion P of changes in (Ggy—Gga)-

The argument that the changes in free energy of enzyme
interaction with reactant-state, transition-state and prod-
uct-state structures for reactions of enzyme-bound species
will be random and uncorrelated has two parts.

First, the structures of the three species may be quite
different: consider an Sy2 reaction catalyzed by a methyl-
transferase, for example. The large structural differences
between the three successive states (tetrahedral methyl
bonded to donor; approximately planar methyl bonded to
both donor and acceptor; tetrahedral methyl bonded to
acceptor) in the reaction then dictate that the interactions
with enzyme will be quite different and will be affected by
enzyme mutations in very different ways.

The second part of the argument addresses the fact that,
in spite of these structural differences between successive
states, their interactions with various solvents, for example,
may nevertheless be governed by just the kind of linear
free-energy relationship assumed by Albery and Knowles.
If a series of solvents, why not a series of mutant enzymes?

STOCHASTIC MODEL FOR MOLECULAR EVOLUTION

In the case of solute transfer from solvent to solvent, the
surrounding solvent may relax to accommodate various
solute structures. The varying structures of reactant, transi-
tion state and product may then, in effect, dictate solute—
solvent interactions in such a way that reaction rate and
equilibrium constants from solvent to solvent are corre-
lated. In enzyme catalysis, in contrast, the essential fact is
that the enzyme structure governs rigorously and unforgiv-
ingly the free energies of bound species, often tolerating
little or no change in substrate, transition-state or product
characteristics. It therefore seems unlikely in the enzymic
context that any correlation of free energies can be dictated
solely by characteristics of the molecules undergoing cata-
lyzed reaction.

In any case, it seems desirable to explore whether the
leveling of reactant-state energies, a prediction of the Al-
bery-Knowles theory which is known to be confirmed by
experience, in any way depends on the assumption of a
linear free-energy relationship for reactions of bound spe-
cies.

An alternative, stochastic model of molecular
evolution

If we are to construct a model that avoids the assumption of
a linear free-energy relationship, we lose constraints neces-
sary for the Albery—Knowles program of optimizing the
enzymic flux. Therefore, instead of solving the optimiza-
tion problem analytically, we have chosen to simulate mo-
lecular evolution computationally in such a way that the
mutational change in free energy of every state along the
reaction pathway is random and independent, within only
the constraints imposed by basic principles of thermody-
namics and kinetics.

The result is a completely stochastic model for molecular
evolution. If it fails to reproduce the observed leveling of
reactant-state free energies in evolved enzymes, that will
indicate that the linear free-energy relationships assumed
by Albery and Knowles not only do hold — in spite of the
objections offered above — but in addition are critical con-
tributors to the outcome of molecular evolution. It would
of course in such a case be possible to modify the stochastic
simulation by introduction of contingencies that will simu-
late the required linear free-energy relationships. On the
other hand, if the purely stochastic model reproduces
‘matched internal thermodynamics,’ it will mean that the
observations can be accounted for without any assumption
of linear free-energy relationships, which then become an
unnecessary physical feature of the Albery-Knowles
model, although mathematically convenient.

Fig. 2 shows a schematic free-energy diagram for the
kind of system we will subject to simulation. Since the
simulation is freed of the necessity for algebraic con-
straints, any mechanism can be considered. We begin with
a Uni-Uni reaction with two ‘chemical steps.” Chart 1
shows the corresponding mechanism with assignment of
rate constants and gives the relationship between the flux ¢

783



HUHTA ET AL.
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Fig. 2. Schematic free-energy diagram for an enzymic reaction
which is to be modeled stochastically. See Chart 1 for the
corresponding mathematical expressions.

and these rate constants and between the rate constants
and the free energies of species of species along the reac-
tion path. Note that the thermodynamic constraint imposed
by the equilibrium constant of the overall reaction, which is
not accessible to evolution, is automatically included.

In Fig. 3. a flow chart of the simulation program MUTA-
TION is presented.' The simulation begins with an as-
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¢ = [(k/K)A - (k/K,)P]/[1 +(A/K,) + (P/K,)]

=L, ke koks | kokaks
ki kiks k1k1k5+klk3k5k7

k4 k4k6 + 1 k6 1

=

1 1
o ko kaks  ksksky ks ksky Ky
P kq + k7k5 + k7k5k3

=1 _KaKsks
k, ks  keks kskeks = kskkaks

1 ks o kska 1, ks 1

L
ke keka  kekaks ke kaks K

>§?r

=~

ki = kh_Te—(cm-Gs-cx)/Rr= kh_Te -Gr/ RD if G+ G{=0

k= kh—Te'(Gsz'GEA)/RT

kg = kh—Te-(Gm-AG")/RT if Gg+GE=0

For each species:

Continue using Gi's No

Yes
PirN -
Sucessful Mutation
Continue Evolution Yes
- —— More ?
Record new energies (Gi's= Hj's)
No
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"Mutate" by randomly varying 1. generate random number
the free energy of each species between 1 and 10
2. read 3G from table
I 3. Hi=Gi+8G
[Culculule rates from frec energies
PN Sample 8G table
RN 8G (1)
1 5000
Irrational Mutation 1. kjand kg <k gigy 2 3750
Continuc using G 's 2. kip < thermal vibration 3 250
No 4 5
5 0
6 0
7 -5
Yes 8 -250
Calculate Flux 9 -3750
10 -5000
PN
Unsuccessful Mutation New Flux > Old Flux

Fig. 3. Flow chart of program MUTATION,
which simulates molecular evolution
stochastically.
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T L T ] Fig. 4. Flux through the enzymic reaction for 300 evolutionary
5000 . I TR LEERE trajectories, shown as a function of the number of successful
I g ! ! ] mutations. All simulations in this set began with the following
[ ° g o 1 primeval rate constants (s~ unless otherwise indicated; see
4000 |- o gé . Chart 1): k, = 10 m~' s7'; k, = 100; k; = 0.0001; k, = 100;
[ o a9 ks = 107; ks = 0.01; k, = 0.001; ks = 0.01 M~ s™". The
on g : ] equilibrium constant is therefore unity. Standard-state
'l 3000 - : B B concentrations were 1 mM (A) and 1 uM (P). The primeval flux
> a a was 1078 s™'. The maximum second-order rate constant was
9 [ § 1 set to 107 M~' s~' so the maximum flux is around 5000 s~’
3 2000 ° g N [= ca. (1/2)(10” M~ s~")(1 mM)]. The maximum first-order rate
= i o constant was set to 10'2 s~'. Simulations converged to values
[ ° g° 1 of k; = kg = 107 M~' s7' in all cases. The internal rate
1000 8 o . constants k, to k, had various values in the neighborhood of
: i ° 10'2 s7' (see Fig. 5).
0 C "Ml | E | A R |
0 50 100 150 200
# Successful mutations
sumed mechanism and set of ‘primeval’ rate constants sup- consistency with these two fundamental kinetic constraints.
plied by the user. The program contains a random-number (1) Second-order rate constants must be equal to or
generator'’ and a table of arbitrary translations, supplied smaller than the diffusional second-order rate constant.
by the user, of random numbers into energy increments. By (2) First-order rate constants must be equal to or smaller
use of random numbers and the table, the program alters than a molecular vibrational frequency.
the free energy of each enzyme-bound state by a random If either constraint is violated, the event is classified as an
increment and then calculates new microscopic rate con- irrational mutation and discarded; the program returns to
stants from the free energies of activation thus generated the original set of free energies and begins again. If neither
(see Chart 1). Each of the rate constants is checked for constraint is violated, the mutation is declared rational. For

40000

30000

20000

10000

I
|

Free Energy (/J mol~ 1)

—-10000
Reaction Progress

Fig. 5. Superimposed free-energy diagrams for 300 evolutionary trajectories from the starting point given in the caption to Fig. 4. Note
that the critical ‘on’ and ‘off’ steps have sharp transition-state free energies corresponding to the maximum flux of ‘perfect’ (diffusion
controlled) enzymes. All the internal steps have approached the maximum rate of a molecular vibration frequency, but because the
flux is litle dependent on the exact values of the rate constants, both reactant-state and transition-state free energies exhibit ‘genetic
drift.” Nevertheless, reactant-state free energies are substantially equal to each other (‘matched internal thermodynamics’) and the
transition states are also equal in free energy to each other (‘matched internal kinetics’). For these diagrams, reactant and product
standard states have been adjusted to 1 M, although values of 1 mM (A) and 1 uM (P) were employed in the simulations.
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rational mutations, the flux is calculated and compared
with the ‘old flux’ for the preceding enzyme. If the old flux
is larger, the mutation is declared unsuccessful, the new
free energies are discarded and the old ones retained for
the next round of variation. If the new flux is larger, the
mutation is declared successful, and the new free energies
replace the old ones. The new free energies are then the
starting point for the next round of mutations.

Results of the stochastic simulation

Fig. 4 shows the result of 300 simulations, all starting with
the same primeval rate constants indicated in the caption.
Since the starting flux was the same small value for each
simulation, there is a single common starting point at zero
successful mutations. The flux is of course required by the
program to increase as the number of successful mutations

grows, but Fig. 4 shows how dramatically differently this
occurs along each of the individual simulations. Thus after
a number of successful mutations that produce on the aver-
age about half the maximum flux, about 50-70 successful
mutations in Fig. 4, a very great diversity is exhibited: the
microscopic history of each evolutionary sequence is quite
different, so that at 60 successful mutations, there is a
dispersion of fluxes covering nearly the entire range from
very small values up to around 5000 s™!. As evolution
proceeds, this diversity, created by the chance of random
mutation, is eliminated by the necessity of natural selection
for higher flux. The range of flux values narrows until the
maximum value of about 5000 s™! is achieved along every
evolutionary trajectory. This is in fact the maximum phys-
ically achievable flux on the model chosen, corresponding
to diffusion-controlled reaction of the enzyme with both
substrate and product, so that all the enzymes along each
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500 |- I Transition B
> : States
5 400 - 3
= i ]
E 300 e P Final distribution E
200 |- S
100 £ Xglitial distribution 3
0 20000 40000 60000 80000
500 [T i T T ]
3 J Ground ]
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> ]
= - Final distribution 3
5 300 ¢ inal dis = 1
3 ]
o
L 200 F j
100 L RInltlal distribution j
t w%%
0 !

-40000 -20000

0 20000 40000

Free energy (/J mol~ 1)

Fig. 6. Initial and final free-energy distributions for 300 evolutionary trajectories. For each trajectory, a starting-point set of reactant-
state and transition-state free energies was generated randomly. The free energies of the ‘on’ and ‘off’ transition states were initially
set at 50 kJ mol~"'. The upper and lower bounds for internal transition-state free energies were 0 and 80 kJ mol™', respectively. The
upper and lower bounds for internal reactant-state free energies were —40 and +30 kJ mol™', respectively. Free-energy profiles were
rejected which had free energies of activation smaller than vibrational-frequency values for internal steps. This had the effect of
truncating the lower branch of the internal transition-state free-energy distribution and the upper branch of the internal reactant-state
free-energy distribution (as can be seen by inspection of the figure). The program MUTATION then subjected each of the starting-
point enzymes to evolution until perfection was attained. The final distribution of reactant-state energies is (a) sharp, corresponding to
‘matched internal thermodynamics,’ and (b) centered at a higher average free energy than the initial distribution, showing that
evolution leads to higher reactant-state energies. The final distribution of transition-state free energies is (a) sharp, corresponding to
‘matched internal kinetics,” and (b) centered at a lower average free energy than the initia! distribution, showing that evolution leads to

lower transition-state energies.
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evolutionary trajectory have ‘evolved to perfection’ in the
phrase of Albery and Knowles. In the series of 300 sim-
ulations shown in Fig. 4, the primeval flux was 10~®s™" and
the ‘perfect’ flux 10*7 so that the enzymes evolved an
increased catalytic power of 11.7 orders of magnitude.

Fig. 5 presents the results in the form of superimposed
free-energy diagrams for the 300 ‘perfect enzymes.” The
energy barriers for the ‘on’ reaction of substrate and the
‘off’ reaction of product exhibit transition-state free ener-
gies that are very sharply equal for all evolutionary trajec-
tories (corresponding to diffusion control). On the other
hand, the free energies of the reactant and transition states
for the relatively fast internal reactions to EA to EM and
EM to EP show considerable ‘genetic drift’ because the flux
is not much dependent on the exact values of these free
energies as long as the steps remain very fast compared
with the ‘on’ and ‘off’ reactions. Note, however, that the
reactant-state free energies from one internal species to an-
other have become essentially equal to one another, so that
the model reproduces the experimental observations of
‘matched internal thermodynamics.” Furthermore, for the
internal reactions, the transition-state energies also tend to
become equal to each other so that, in addition to values of
unity for the internal equilibrium constants, the model pre-
dicts equal rate constants for all internal reactions — ‘matched
internal kinetics.’

These points are confirmed by the further simulations
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% T8
£
)
H
=
2
2
<]
T2 T78
E5 T3s T
2
5]
3 EA EM EP
=
2 E+A E+P
2
(&)
"Modern" Enzyme

Reaction Progress

ky k3 ks ky
E+A =EA<—EM==EP—E+P
2 ky kg ky

Fig. 7. Natural selection for higher flux exerts a downward
pressure on the free energies of transition states and an upward
pressure on the free energies of reactant states. The results are
‘matched internal thermodynamics’ and ‘matched internal
kinetics.’

STOCHASTIC MODEL FOR MOLECULAR EVOLUTION

described by Fig. 6. Here 300 randomly chosen sets of
initial, primeval rate constants were generated. In the up-
per part of the figure, one sees the broad spectrum of free
energies of the corresponding transition states; in the lower
part of the figure, a similar spectrum of reactant state free
energies. Then, at the end of the simulation, each of the
300 different initial kinetic manifolds had evolved to a
similar, convergent manifold, so that the free energies of all
enzyme-bound transition states then lay within a narrow
band and the free energies of all enzyme-bound reactant
states also lie within their own narrow band.

Conclusions

These purely stochastic simulations show that the original
Albery-Knowles finding of ‘matched internal thermody-
namics’ is more general than might have been supposed:
the result is in no way dependent upon the assumption of a
linear free-energy relationship for internal reactions. Con-
versely, the experimental observations of matched internal
thermodynamics do not in any way support a supposition of
the existence of such linear free-energy relationships.

In addition, the simulation suggests ‘matched internal
kinetics.” The rate constants for enzyme-bound species will
tend to equality as evolution proceeds. This is in general
agreement with the observation that multiple steps often
contribute to rate limitation for enzymes.

In fact, both characteristics of evolved enzymes, leveled
reactant-state free energies and leveled transition-state free
energies are predicted by very simple considerations (Fig.
7). An evolutionary process in which enzyme selection
pivots on high flux will always exert a downward pressure
on the free energies of transition states and an upward
pressure on the free energies of reactant states: low transi-
tion-state free energies and high reactant-state free ener-
gies make for low barriers, for enzymes largely in the free
and thus reactive form, and therefore for high flux. At the
same time, it is always the highest free-energy transition
state and the lowest free-energy reactant state that primar-
ily determine the rate. Thus enzymes will tend to be se-
lected in which the free energy of the primevally highest
free-energy transition state is steadily lowered until the
next lower transition state is encountered; then it will be-
come the focus of evolutionary attention. Similarly, the
lowest free-energy reactant state will be steadily raised
until the next higher state is encountered. The eventual
result will inevitably be leveling of all transition states and
leveling of all reactant states.
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