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a-Oxo ketenes (acetylketenes) are versatile intermediates
in organic synthesis, usually generated by thermolysis of
2,3-dihydrofuran-2,3-diones,'* thermolysis or photolysis of
1,3-dioxin-4-ones,*® or thermolysis of B-keto esters.5’
In connection with our studies on the photoisomerization
of a-oxo ketenes® and of the degenerate, thermal acyl-
ketene-acylketene rearrangement (R—CO—-CH=C=0 2
O=C=CH-CO-R) which takes place for R = aryl® but
not for R = CH,,’ it was mandatory to develop methods for
the clean and independent generation of a-oxo ketenes of
known initial stereochemistry.
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Scheme 1.

Here we report the generation of simple benzoylketenes
2 by both flash vacuum pyrolysis (FVP) and matrix photo-
lysis of furandiones 1 (Scheme 1). The ketenes were identi-
fied by their low temperature IR spectra and by high reso-
lution mass spectrometry. Chemical proof for the identity
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of the ketenes has been given by trapping in [2 + 4] cyclo-
addition reactions in solution,>* but the ketenes are not
directly observable under such conditions. Indeed, a-oxo
ketenes are extremely unstable except when Kkinetically
stabilized by sterically protecting groups.'

FVP of 1 at 400-500°C (10~* mbar) with isolation of the
products as neat solids at 77 K for IR spectroscopy permit-
ted the observation of strong bands due to the ketenes 2
near 2136 cm™'. The C=O stretching vibrations were far
less prominent, giving rise to bands in the range 1600-1680
cm™! (full spectra are listed in the Experimental section).
Similar pyrolysis of 1a with Ar matrix isolation of the
product at 15 K gave 2a, featuring an extremely strong
Ve—c-o at 2147 cm™! and much weaker bands at 1665, 1648,
1602, 1600, and 1384 cm™! (Fig. 1). The shift of ca. 10 cm™!
on going from the neat solid to the matrix-isolated sub-
stance is normal. Most importantly, the shape of the 2147
cm™! ketene band (Fig. 1) was identical with that of ben-
zoylketene produced by FVP of methyl benzoylacetate.®
The main band at 2147, 2144 cm™! is ascribed to s-cis-
benzoylketene (2a), and the smail shoulder at 2134, 2132
cm™' to s-trans benzoylketene.® The ketene 2a is a far
stronger absorber than carbon monoxide, which appears at
ca. 2139 cm™! and is barely visible in the spectrum shown in
Fig. 1 (this CO peak increases on photolysis, vide infra).
The shape of the BC satellite of the C=C=0 band with
maximum at 2090 cm™! (not shown) was virtually identical
with that of the main band at 2147 cm™!, and also identical
in shape and position with the vic_c-o band in the
B3C labelled compound, Ph—CO—"CH=C=0, generated
by rearrangement® of Ph—BCO-CH=C=0 at 850°C
(10~* mbar) with Ar matrix isolation at 15 K. The present
method of FVP of 1a is far superior to ester pyrolysis® for
the generation of IR spectra of acylketenes; the spectrum
shown in Fig. 1 is essentially due to pure 2a. All the bands
below 2147 cm™! are also present in the spectrum generated
by ester pyrolysis, but their assignment to 2a was not pos-
sible previously.

Photolysis of Ar matrix isolated 1a with the unfiltered
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Fig. 1. FT-IR spectrum (Ar, 15 K) of benzoylketene (2a) produced by FVP of 1a at 500°C (10~° mbar). Inset: detail showing the

structure of the v¢_c_o band near 2147 cm™' (maximum).

light of a high-pressure Xe—Hg lamp also produced 2a, with
the main ve_c_g at 2147 cm™! and its shape much like the
one shown in Fig. 1. This confirms that the high frequency
portion (2147 cm™!) of the band is due to the s-cis isomer.®
However, 2a is photochemically unstable. Ar matrix isola-
tion of thermally produced 2a followed by broad-band
photolysis at 12 K for 16 h caused complete conversion of
2a into phenylketene (3) and CO. The shoulder around
2134 cm™! ascribed to the s-trans form of 2a (see Fig. 1)
initially increased in intensity relative to the 2147 cm™
band on photolysis, but both then disappeared due to
conversion into 3 and CO. Phenylketene (3) (Veec-o
2120 cm™!; BC satellite at 2067 cm™') was identified by
comparison with an authentic sample, produced! by matrix
photolysis of diazoacetophenone (4) (Ar, 12 K).

While the experiments described above provide com-
pelling evidence that the benzoylketenes 2 have been
identified, they fall short of absolute proof. Additional
strong evidence was adduced by real-time monitoring of
the pyrolysis reactions of 1 by mass spectrometry, using a
reactor situated immediately in front of the ion source of
the spectrometer. As the FVP temperature was increased
above 200°C, the ion currents due to the molecular ions of
1 decreased rapidly, falling to zero at ca. 400°C. At the
same time, the molecular ion due to 2 increased sharply,
m/z 146 for 2a reaching a maximum at 350°C, and decreas-
ing only slightly on further heating to 650°C. Since all of
the starting furandiones 1 had disappeared above 350°C, it
is obvious that the neutral ketenes, 2, were being detected.
Their compositions were confirmed by exact mass measure-
ments near the optimal FVP temperatures (400°C).

We are using the same methodology to generate s-cis
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acetylketene and study its photo-conformers. The results
will be presented elsewhere in due course.

Experimental

Flash vacuum pyrolysis (FVP) was carried out in unpacked
quartz tubes (10 cm length; 0.8 cm i.d.) using the apparatus
previously described. Pyrolysis products were condensed
in an Ar matrix at 12-22 K or neat at 77 K.

Matrix photolysis was carried out using a 1000 W high
pressure Xe-Hg lamp. FT-IR spectra were recorded on
a Perkin-Elmer 1720X spectrometer at a resolution of
lem™.

FVP/MS was carried out in an apparatus similar to the
one used for matrix isolation, employing a 10X 0.8 cm
quartz tube directly connected to the ion source of a Kratos
MS25RFA mass spectrometer. There was a ca. 3 cm un-
heated length of quartz tube between the pyrolysis zone
(200-1000°C) and the ion source (200°C).

5-Aryl-2,3-dihydrofuran-2,3-diones (1) were prepared
according to the literature.’

FVP of 5-arylfuran-2,3-diones (1) was carried out at
400-500°C (10~* mbar) with isolation of the products on a
KBr disk at 77 K for IR spectroscopy. The following
spectra were obtained. 2a (R = H): 3062, 2135 (vs), 1622,
1613, 1598, 1577, 1449, 1384, 1221, 1000, 705 cm™'.
2b (R = CH;): 3046, 2136 (vs), 1618, 1605, 1569, 1409,
1384 cm™. 2¢ (R = G,H,0): 2982, 2135 (vs), 1671, 1604,
1571, 1425, 1383, 1259, 1177, 1045 cm™'. 2d (R = Cl): 3061,
2148 (vs), 1681, 1618, 1590, 1569, 1490, 1409, 1381, 1219,
1096, 1010, 865, 843, 746, 503 cm™!.



Matrix isolation of 2a. 1a was pyrolyzed at 500°C (5 x 107
mbar) and the products isolated in Ar matrix at 15 K. The
IR spectrum (Fig. 1) showed the following bands assigned
to 2a: 2147 (vs), 2144 (sh), 2137 (sh), 2134 (sh), 2132 (sh),
2090 (w, C satellite), 1665 (w), 1648 (w), 1602 (w), 1600
(w), 1451 (w), 1384 (m), 1216 (m), 1004 (w), 998 (w), 700
(w) cm~!. Bands at 2345 and 2340 cm™' were due to CO,,
and a band at 2139 cm™ to CO.

The same bands due to 2a were obtained on pyrolysis of
methyl benzoylacetate at 850°C,° but the spectrum was
much less clean in this case.

Matrix photolysis of 2a. A sample of 2a prepared as de-
scribed above was photolyzed unfiltered in an Ar matrix at
12 K over a 20 h period. The low-frequency ketene bands
around 2134 cm™! initially increased in intensity relative to
the main 2147 cm~! band, as did the band at 2139 cm™!
ascribed to CO. Further irradiation caused all bands of 2a
to disappear (16 h), with concomitant increase in the CO
band and formation of a new ketene absorbing at 2120 (vs)
and 2067 (w, C satellite) cm™'. The CO disappeared when
the temperature was raised to 40 K, but the new ketene
remained. this new ketene was identified as phenylketene
by direct comparison with a sample prepared by matrix
photolysis of diazoacetophenone'! (Ar, 15 K, 10 min, unfil-
tered light): 2120 (vs), 2067 (w, “C satellite), 1604 (m),
1505 (m), 1239 (w) cm™.

Matrix photolysis of 1a. 1a was deposited with Ar at 12 K
and photolyzed with the (unfiltered) light of the high-pres-
sure Xe-Hg lamp for 15 min. The ketene formed initially
showed a strong absorption at 2147 cm™!, with a less well
developed shoulder at 21322137 cm™'. This indicates that
the major band at 2147 cm™! is due to the s-cis isomer of 2a.

FVPImass spectrometry of 1. The molecular ions of la—c
and 2a—c were monitored by mass spectrometry as a func-
tion of temperature. The intensities of the molecular ions
of 1la—c decreased to zero when going from 200 to 400°C,
and those of 2a—c reached a maximum at 350-400°C. The
high resolution mass spectra of thermally produced 2 were
measured at an FVP temperature of 400°C.
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2a: Cale. for CH O, 146.03674; found 146.0367. 2b:
Calc. for C,,H,0, 160.05238; found 160.0532. 2¢: Calc. for
C,,H,,0; 190.06293; found 190.0626. Low resolution MS of
2a: 146 (70, M*), 105 (100), 77 (60), 51 (15), 28 (10).
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