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Activities of dilute KCl solutions at 273 K were recalculated from the existing
freezing-point data. It was found that the results of the most precise measurements up
to a molality of 0.30 mol kg™' can be predicted within experimental error by a
two-parameter equation of the Hiickel type. The two parameters of this Hiickel
equation were determined from the measured results of Scatchard and Prentiss
[Scatchard, G. and Prentiss, S. S. J. Am. Chem. Soc. 55 (1933) 4355]. From this
Hiickel equation accurate activity and osmotic coefficients can be estimated for dilute
KCl solutions at 273 K. These values, in addition to the recommended freezing-point
depressions, have been tabulated at rounded molalities. The standard deviations of
the estimated quantities were determined by the nonparametric jack-knife method.

It is known that the most reliable activity coefficients of
dilute aqueous solutions of alkali metal halides at some
temperature can be obtained from results of measurements
on appropriate concentration cells with transference. In a
previous study’ it was shown that the existing experimental
data of cells of this kind can successfully be predicted by
using a two-parameter equation of the Hiickel type for the
activity coefficients. In most cases, this concentration cell
method has been used only in such solutions where the
molalities are less than 0.1 mol kg™'. When activities of less
dilute solutions of alkali metal salts have to be determined,
the isopiestic method is most frequently chosen. The diffi-
culty in applying the latter method is that one needs a
reference electrolyte, and the activities of the electrolyte of
interest cannot be directly determined. Another potentially
accurate method for the study of the thermodynamics of
less dilute salt solutions is the cryoscopic method. This
method was popular at the beginning of this century, and a
number of very precise cryoscopic data of solutions of
various salts are available in the literature.

In comprehensive studies by Hamer and Wu? and by
Pitzer and Mayorga® the activities of uni-univalent electro-
lytes were recalculated for aqueous solutions at 298 K. At
this temperature the freezing-point data had to be omitted
from the calculations. No recent studies, as far as we know,
have been reported in the literature in which the activities
of various uni-univalent electrolytes have been determined
from the existing freezing-point data. In the present paper
an analysis of this kind is performed for potassium chloride
solutions.

Generally accepted activities for potassium chloride so-
lutions at 273 K have so far not been presented. The most
reliable values were obtained by Scatchard and Prentiss,*
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based on their freezing-point determinations, and by
Harned and Cook,’ based on their measurements with
potassium amalgam cells (see below). Unfortunately, the
values of these two investigations do not agree with each
other as well as desired. At a molality of 0.1 mol kg™!, for
example, Scatchard and Prentiss* gave the value of 0.7725
for the activity coefficient of KCl, while that of Harned and
Cook is 0.768.°

In the present study the freezing points of the most
precise cryoscopic data measured in potassium chloride
solutions were correlated with the molalities by means of a
Hiickel equation, written to correspond to the temperature
of 273 K. It was found then that these data and also the
results of the other accurate freezing-point determinations
in KCI solutions can be predicted almost completely by
means of the resulting equation up to a molality of 0.30 mol
kg™'. In a previous study® the Hiickel equation was applied
with equal success to predict the freezing-point data of
NaCl solutions up to a molality of 0.45 mol kg~'. Only
seldom has an equation with the simplicity of the Hiickel
one been successfully applied for molalities above 0.1 mol
kg™! in the literature.'

Calculations and results

In the present study the Hiickel equation at 273 K was
used, as mentioned above, for the calculation of activity
coefficients of potassium chloride in aqueous solutions at
the freezing point of the solutions. In a dilute solution of a
uni-univalent electrolyte the equation for the mean activity
coefficient at the molality scale (y.) can be presented in
the form due to Pan’ as eqn. (1). By means of the

: 1
In vy, 15 parm’ | 2M, ( )m @



Gibbs-Duhem equation eqn. (2) can be derived from
eqn. (1) for the osmotic coefficient (¢).

p=1- (—ﬁaj?n— [(1+Ba*m?) — 2In (1 + Ba*m?)

- 1+Ba*m) M+ M, (h—1)m ?)

In eqns. (1) and (2), m is the molality of the solution, M, is
the molar mass of water (= 0.0180 15 kg mol™') and o and
B are the Debye—Hiickel constants, 1.1293 (kg mol™')! and
3.245 (kg mol™')! nm™!, respectively, at 273 K and at the
molality scale.® In the equations the two parameters that
depend on the electrolyte are the ion-size parameter, a*,
and the hydration number, A.

When the osmotic coefficient @ is used, the relationship
of eqn. (3) between the freezing point depression, AT;, and
the molality of the solution can be derived.
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In this equation 77 is the freezing point of pure water (i.e.
273.15 K) and T; is that of the solution, AHj, is the molar
enthalpy of fusion of water at T}, 6009.5 J mol™',” AC, is
the difference between the molar heat capacities of water
as a liquid and as a solid at 101.325 kPa and at 17, 37.87J
K~ mol~1.%! In the present calculations it is assumed to be
independent of the temperature. R is the gas constant,
8.31451 J K™ mol™..

The parameters a* and 4 in the Hiickel equation were
determined from the freezing-point data of Scatchard and
Prentiss.* The method of determination was based on the
minimization of the sum of squared prediction errors calcu-
lated from eqn. (4), where e(AT;) is given by eqn. (5), and

N

§ =2 e(AT) @
i=1

e(AT)) = AT(observed) — AT(predicted) 5)

N is the number of points included in this determination.
For each pair of values of a* and h, AT(predicted) was
calculated by eqn. (3) [by means of eqn. (2) for @] from
every molality included in the determination of a* and h.
For this pair of values of a* and k, the sum of squared
prediction errors was then calculated by eqn. (4). The
values of a* and h were chosen in such a way that they give
the smallest value of S. During the preliminary calculations
it was observed that only such points could be taken into
account in the determination of a* and & in which the
molality is less than 0.3 mol kg™*. The determination of this
upper limit was based on studies of the randomness of the
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Fig. 1. Common logarithm of the quantity S/N obtained from the
freezing-point depressions of Scatchard and Prentiss* as a
function of the parameters a* and h in the Hickel equation (m
< 0.30 mol kg™'). S is the sum of the squared prediction errors
defined by egn. (4) and N is 15.

error plots obtained from the subsets containing different
numbers of points due to Scatchard and Prentiss* and on
the corresponding values of the residual standard deviation
for fit (s,), defined by eqn. (6).

so = [SI(N=2)] (6)

For the points where the molalities are less than 0.3 mol
kg™!, the dependence of S in eqn. (4) on a* and A is shown
in Fig. 1. In this figure the common logarithm of the quan-
tity S/N is presented as a function of these parameters.
According to this figure S is a very sensitive function of the
parameters in the Hiickel equation, as has previously been
observed for NaCl solutions.® A very deep minimum of
2.0x1077 K?*for S, corresponding to the value of 1.25x107*
K for s,, is obtained when a* = 0.390 nm and h = —0.32.
The standard deviations of these values can be obtained by
the jack-knifing technique (see Appendix or Ref. 11), and
the results are 0.005 nm and 0.16, respectively.

The validity of the parameter values of a* = 0.390 nm
and h = —0.32 was then tested by using all existing thermo-
dynamical data measured in KCl solutions at the vicinity of
273 K. In these tests the existing experimental data were
predicted by means of eqns. (1) or (2) applying the derived
values of the two parameters. The error plots of this
Hiickel equation obtained from the cryoscopic sets are
shown in graphs A and B in Fig. 2. Only such sets are
included in these graphs which contain points measured at
molalities above 0.1 mol kg™!. The important results by
Adams,"”? Brown and Prue®® and Garnsey and Prue! are
therefore not included in Fig. 2. The reason for the exclu-
sion of these data sets is that the AT; values of the dilute
solutions in these sets can be predicted equally well by the
best activity coefficient equations at 298 K. The errors
arrived at by these equations do not differ significantly
from the errors obtained by the present Hiickel equation.

During the determination of the most reliable values for
a* and h it was observed that all data points due to
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Fig. 2. The difference, e(AT,), between the experimental
freezing point depressions and those predicted by means of the
Huckel equation with a* = 0.390 nm and h = —0.32 as a
function of the molality.

Scatchard and Prentiss* could be predicted quite satis-
factorily by means of an equation of the Hiickel type. In an
attempt to increase the practical applicability limits,
another Hiickel equation was determined by the above-
described method from all points of this study. The fit
contained in this case points up to a molality of 1.25 mol
kg™!, and the minimum of 5.4x107* K for s, was obtained
when a* = 0.368 nm and & = 0.42. The error plots obtained
by means of this Hiickel equation from three different sets
are shown in Fig. 3.
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Fig. 3. The difference, e(AT;), between the experimental
freezing-point depressions and those predicted by means of the
Hiickel equation with a* = 0.368 nm and h = 0.42 as a function
of the molality.
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Fig. 4. The difference, e(E), between the experimental
electromotive forces of amalgam cells [cell (7) in the text] and
those predicted by using the Hiickel equations obtained in this
study. The molality m, in eqn. (8) is presented on the molality
axis and m, is 0.1 mol kg~' in Smith’s data set and 0.05 mol
kg~' in that of Harned and Cook.

The two Hiickel equations determined above can also be
tested with the results from electrochemical measurements.
In dilute KClI solutions at 273 K Smith* and Harned and
Cook® have performed experiments on potassium amalgam
cells of the type shown in cell (7). The electromotive force

Ag(s)|AgCl(s)|KCl(ag,m,)[K(Hg.x)|KCl(aq,m,)| AgCl(s)| Ag(s)
(™)

(E) of cells of this kind depends on the molalities m, and m,
according to eqn. (8). In our tests, we predicted the experi-

2RT  y:(2)m,

E= F lnm ®

mental EMF values of these sets with eqn. (8), for which
the activity coefficients were calculated by eqn. (1) with the
two pairs of the parameter values determined above. The
results are shown in Fig. 4.

Discussion

According to Fig. 2A, all experimental AT; values included
in the determination of the Hiickel parameters a* and A can
be predicted within 0.0003 K by means of the resulting
Hiickel equation. According to this graph the results ob-
tained by Jahn'® and by Jones and Bury'” are less precise
than those of Scatchard and Prentiss.* However, the
measured freezing-point depressions of these two sets also
probably agree, within their precision, with the predicted
values which were calculated by means of the Hiickel
equation with the parameter values of a* = 0.390 nm and
h = —0.32.

In Fig. 2B the set containing the most precise experi-
mental data is probably the one measured by Damkdhler
and Weinzierl.” The points from this study seem to be as
reproducible as the AT, values of Scatchard and Prentiss.*
Unfortunately, the errors obtained by the Hiickel equation
from that set do not satisfactorily support this equation.



Additionally, according to this graph, the errors of the sets
obtained by Karagunis ef al.,'® Cavallaro® and Cavallaro
et al.* form almost the same pattern as the errors of Dam-
kohler and Weinzierl."” Therefore, the experimental points
of these four sets agree with each other but disagree with
the points of Scatchard and Prentiss.* The question there-
fore arises, as to whether it is possible to determine more
reliable values for a* and & from the set of Damkohler
and Weinzier]” than the values obtained from the set of
Scatchard and Prentiss.* In order to study this possibility,
the values of these parameters were also determined from
the set of Damkohler and Weinzierl.' In the corresponding
fit, however, the value of s, is more than twice the value
obtained above from the set of Scatchard and Prentiss.* In
addition, the Hiickel equation determined from the set of
Damkohler and Weinzierl' does not predict the experi-
mental AT; values of the dilute sets of Adams,'? Brown and
Prue® and Garnsey and Prue,'* as well as the Hiickel equa-
tion determined above. One may therefore conclude that
the experimental results of Damkohler and Weinzierl® are
probably not as reliable as originally believed.

In Fig. 3 it can be seen that the Hiickel equation obtained
from all points of Scatchard and Prentiss* accords satis-
factorily with the experimental A7, values up to a molality
of about 1.5 mol kg™!. For these higher concentrations,
however, the Hiickel equation seems to be incapable of
predicting the most precise measured results within experi-
mental error. Presumably, the pattern of the errors in the
set of Scatchard and Prentiss* is not a random one. On the
other hand, the results from freezing point measurements

Table 1. Recommended freezing-point depressions of KCI
solutions at rounded molalities.

m/mol kg™! AT/K m/mol kg~' AT/K
0.01 0.0360 0.25 0.8416
0.02 0.0713 0.26 0.8744
0.03 0.1061 0.27 0.9071
0.04 0.1407 0.28 0.9398
0.05 0.1750 0.29 0.9724
0.06 0.2092 0.30 1.0051
0.07 0.2432 0.35 1.169
0.08 0.2771 0.40 1.332
0.09 0.3108 0.45 1.494
0.10 0.3445 0.50 1.657
0.11 0.3781 0.55 1.818
0.12 0.4116 0.60 1.980
0.13 0.4450 0.65 2141
0.14 0.4783 0.70 2.302
0.15 0.5116 0.75 2.463
0.16 0.5448 0.80 2.623
0.17 0.5780 0.85 2.784
0.18 0.6111 0.90 2.944
0.19 0.6442 0.95 3.104
0.20 0.6772 1.00 3.264
0.21 0.7101 1.10 3.583
0.22 0.7431 1.20 3.902
0.23 0.7759 1.30 4.220
0.24 0.8088 1.40 4.537
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Fig. 5. Jack-knife standard deviation estimates for the freezing-
point depressions (A), activity coefficients (B) and osmotic
coefficients (C) obtained by using the Hiickel equation with a* =
0.390 nm and h = —0.32. + denotes the difference §, — 8 in
the Appendix and (——.——) denotes the value of o(8) in the
equation presented in the Appendix.

of different workers in less dilute KCI solutions are not
consistent, as shown in Figs. 2 and 3. Therefore, we believe
that the Hiickel equation, for which the results are reported
in Fig. 3, also has some general value. According to this
figure, the experimental freezing points can in most cases
be predicted within 0.002 K when applying this equation.
When evaluating this prediction ability it is important to
emphasise that, for example, the freezing points of Jones
and Bury'” have been given with an accuracy of 0.001 K.
According to Fig. 4, the experimental results based on
amalgam cells by Smith,” and by Harned and Cook,’ can
be predicted up to a molality of 0.3 mol kg~! within 0.2 mV
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Table 2. Activity and osmotic coefficients of KCI solutions.

m/m° v. (273 K)? Y. (S&P)® v, (H&C)® v. (298 K)¢ ¢ (273 K)? ¢ (298 K) ¢
0.005 0.9291 0.9296 0.929 0.9266 0.9765 0.9756
0.01 0.9042 0.9049 0.904 0.9010 0.9683 0.9673
0.02 0.8725 0.8736 0.8687 0.9580 0.9570
0.05 0.8194 0.8209 0.819 0.8157 0.9412 0.9407
0.10 0.7712 0.7725 0.768 0.7691 0.9264 0.9275
0.20 0.7175 0.7194 0.717 0.9106

0.30 0.6841 0.6867 0.683 0.9012

0.5 0.642° 0.645 0.642

0.7 0.614° 0.618 0.613

1.0 0.585° 0.589 0.588

aThis study. °Ref. 4. °Ref. 5. “Ref. 24. °Calculated by eqn. (1) with a* = 0.368 nm and h = 0.42. m* = 1 mol kg~".

by means of the Hiickel equation with the parameter values
of a* = 0.390 nm and h = —0.32. The second Hiickel
equation determined above explains within 0.4 mV the
measured results of these sets up to a molality of 1.0 mol
kg™'. Apparently, the experimental data of the two electro-
chemical data sets support these Hiickel equations.

According to Figs. 2 and 4, the Hiickel equation with
a* = 0.390 nm and h = —0.32 for KCl solutions seems to
be as reliable as the corresponding Hiickel equation for
NaCl solutions obtained in the previous study.® Very accu-
rate AT values can therefore be calculated by eqn. (3) for
any molality of KClI up to 0.3 mol kg', provided that the
osmotic coefficient is first estimated by eqn. (2) with these
parameter values. The AT; values calculated in this way at
several rounded molalities are given in Table 1. Jack-knife
standard deviations of the predicted freezing points were
also estimated (see Appendix) and are presented in
Fig. SA. For dilute solutions the values in Table 1 agree
within 0.0002 K with the recommended values in the
previous paper® for dilute KCl solutions. Above a molality
of 0.3 mol kg™! the Hiickel equation with a* = 0.368 nm
and & = 0.42 predicts the experimental data satisfactorily,
as shown in Fig. 3. Table 1 therefore also contains the AT;
values calculated by means of this Hiickel equation for the
less dilute solutions.

Table 2 gives the activity and osmotic coefficients of KCl
solutions calculated by eqns. (1) and (2) with the parameter
values of a* = 0.390 nm and &2 = —0.32. Table 2 also
includes the original activity coefficients reported by
Scatchard and Prentiss,* the activity coefficients of Harned
and Cook® based on their measurements on an amalgam
cell at 273 K, and the activity and osmotic coefficients at
298 K presented in Ref. 24. According to Table 2, the new
activity coefficients obtained in this study agree well with
the values of Harned and Cook.® The activity coefficients
presented by Scatchard and Prentiss* are, however, not
close to the new values. The same discrepancy was also
observed in the case of NaCl solutions.® The osmotic coeffi-
cients presented in this table for dilute KCl solutions at 273
and 298 K agree satisfactorily with each other. The jack-
knife standard deviations for the estimated activity and
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osmotic coefficients are shown graphically in Figs. 5B and
C (see Appendix).

Appendix: estimation of standard deviation by the
jack-knife method

The jack-knife method is a nonparametric method which
can be used to estimate the standard deviation of any
statistics calculated from experimental data. The method is
described, e.g., by Efron and Gong" and is outlined below:

Let 6 = 0 (x,, x,, ..., xy) be an estimator of any statistics
evaluated from a set of N measurements, x,, X, ... , Xy. The
standard deviation of 0 is then obtained as follows. First N
estimates, 0,, ,, ..., O, of 8 are calculated from the data
set by deleting each of the N observations once, and only
once, from the data set. The mean of these estimates ob-
tained from the deleted sets is 6, and 8 = X,6,/N. The
jack-knife estimate for the standard deviation of the statis-
tics 0 will be given by eqn. (A1)

N-1F _\ %
0(8) = (TE 6 - 6)2) (A1)

i=1

In our application the data set consists of the freezing
points due to Scatchard and Prentiss® for which the molality
is less than 0.3 mol kg™'. N is therefore 15. 15 estimates of
a* and h were first calculated, according to the method
described above and in the text, and the values of o(a*) and
o(h) were then estimated from these estimates by eqn.
(A1). For predicted freezing-point depressions, activity
coefficients and osmotic coefficients the 15 estimates of a*
and h were used in the evaluation of the jack-knife stan-
dard deviations.
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