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The faradaic impedance for complex mechanisms with one, two or three adsorbed
intermediates has been developed using an analytical solution. A number of mecha-
nisms have been simulated and some general characteristics are presented. For a
mechanism with two or more adsorbed intermediates there is no unambiguous
relationship between the experimental time constants, obtained from the spectrum,
and the time constants found from the mechanistic model. It is also shown that for
mechanisms involving pure chemical steps the In (10)R, [ product cannot always be

used as a Tafel value.

The investigation of complex heterogeneous electro-
chemical processes often requires transient techniques.
Depending on the technique used, the response of the
transient is analysed in either the time or the frequency
domain. Impedance spectroscopy (IS) is an example of
frequency response analysis which has been shown to be
useful in both applied and fundamental electrochemistry,
as well as in other disciplines.'? The power of the technique
is its ability to distinguish between processes with different
time constants at the interface. This is especially important
for the investigation of heterogeneous electrochemical
reaction mechanisms, where adsorption and desorption
processes are likely to occur.

In order to extract mechanistic information from IS it is
important to measure the potential dependence of the
impedance and the steady-state current in the potential
region of interest. Since there are no a priori methods to
determine a reaction mechanism from impedance and
polarization data, a model has to be proposed and tested
for the various experimental conditions. In IS, chemical
models as well as purely electrical models have been used
to interpret reaction mechanisms. The electrical models are
necessary to use in more complicated systems, where
details of the individual steps in the reaction mechanism are
unattainable. However, with a chemical model a more
fundamental coupling between the detailed mechanism and
experimental data is obtainable. An important part of the
IS investigation is therefore the derivation of the im-
pedance function for a certain reaction mechanism. This
function is usually very complicated, even for simple
mechanisms with few elementary steps involved. Thus it is
very difficult to predict the impedance behaviour without
any calculations. Although the number of studies in which
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IS has been used has grown quickly during the last decade,
not much has been written about how the impedance char-
acteristics are related to different types of reaction models;
for example, how the impedance is affected by a change in
the rate-determining step or the presence of pure chemical
or catalytical steps.

We have developed a computer program for the calcula-
tion of the steady-state polarization curves and the im-
pedance spectra for a number of reaction mechanisms. By
varying parameters such as the rate constants and the
potential, we are able to study the polarization and im-
pedance characteristics of different reaction models. With
the zinc dissolution reaction in mind a number of reaction
mechanisms have been simulated.

In a subsequent paper® the details of the anodic dis-
solution of zinc in slightly acidic solution will be presented.

Derivation of the impedance

The impedance function is a special case of the more
general transfer function used in system analysis. If the
pertubation signal x(f) is a sine wave [eqn. (1)], the re-
sponse y(?) is also a sine wave [eqn. (2)], with an angular
frequency w and a phase shift ¢.

x(t) = X sin wt (1)
y(t) = Y sin (0t + @) (2

The transfer function may then be defined by eqn. (3),
where |H(w) | = Y/X.

H(w) = |H(w)| exp (i ¢) ®)
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If x(r) is a voltage and y(f) is a current then H(w) is an
admittance value, the inverse of the impedance value. The
transfer function is only valid when the system fulfils the
following conditions: (1) causality (the response of the
system must be caused by the input signal only); (2) stabil-
ity (the system must return to its initial steady state after
the perturbation); (3) linearity (the system must show a
linear response to the pertubation) and (4) infinity (the
impedance must be finite when the frequency goes towards
zero and infinity and at all intermediate frequencies).
These conditions can be tested by the use of the Kramers—
Kronig transformation on a set of data. The Kramers—
Kronig transformation has been treated in detail for
electrochemical purposes.*”’

The measured quantity in IS is usually the AC current. In
order to simulate the impedance spectra we must derive
how this current responds to the voltage pertubation for a
given reaction mechanism. There are several ways to do
this. We have used the method outlined by Epelboin et al.®
However, this method rests on some additional assump-
tions that have to be made: (1) the reactions follow Tafel
kinetics; (2) the adsorption of intermediates follow the
Langmuir isotherm and (3) charge transfer and adsorption/
desorption are the only processes occuring at the interface.

Under these conditions the faradaic impedance is de-
fined by eqn. (4), where AE=E—E and AL=1L—1I, If

1 AL
Z, AE “)

the pertubation signal is a sine wave we may express it by
eqn. (5).

AE = | AE| exp (i of) )

The faradaic current is a function of potential but may
also be dependent on other state variables, such as the
concentration of adsorbed intermediates. The deviation of
the faradaic current from its steady-state value is therefore
obtained by taking the total differential of the current with
respect to all state variables depending on E. If we use a
small sine wave (<10 mV) to pertubate the system we can
approximate a linear relation between the current and the
potential. The differential may then be obtained by using
terms of first order only, as in eqn. (6), where 6; is the

ol ol
A1f=EEAE+;a—e’_Ae,. (6)
fraction of the electrode covered by the adsorbed species i.
Division by AE gives the faradaic admittance Y; = 1/Z,, as
in eqn. (7), in which quantities are derived from the charge-

1 3l

z=5"

al, A,

: 36, AE @)

and mass-balance equations under steady-state conditions.

The charge balance is given by eqn. (8), where K|, is the
I=F [ 2 (K, - K_n)] (8)

normalized rate constant (in mol cm™2 s™'), which is the
product of the rate constant k, and the concentration of the
reaction species. The rate constants are assumed to vary
exponentially with the potential as in eqn. (9) (anodic
reactions) and eqn. (10) (cathodic reactions).

(1 — a)zF
k, = ky exp <—RT— (E - E°)) )
—azF
k_, = k; exp ( RT (E - E°)> (10)

The mass balance is written as eqn. (11), where v, 4 is the
"

de,
Big = 2 Vas, (1n

n

rate of formation or disappearance of 6, caused by the nth
step (desorption rates taking negative values).

3I/3E and 31/36; are obtained from the charge balance
equation. The steady-state solution, 8;, is given from the
mass balance equation with d6/dt = 0. A6/AE can then be
obtained by noting that for a small sine-wave pertubation
of the potential, the total differential of B, d8/dt can be
written as iof;A0,, where AB; is the time variation of 6;
caused by the perturbation signal [A8,=|A8,| exp (iw)]. If
all B, are equal to § we obtain the set of linear equations

(12)-(14).
de, m 5 de,
) 9 de 2 de A6 b
i0pAg, = “E AE + 2 36, i (12)
d92 m d92
o) W
iopAB, = Y AE + 521 36, i (13)
I | |
de,, m 5 de,,
) ° dr Z dt
i0BAB,, =—-7—— AE +7ic1 30, AS; (14)

After rearrangement and division by AE the system of
equations can be solved for AG/AE. The solution of the
equation system when the number of state variables is one
or two has been given by Cao.> We have generalized the
solution to include also three variables. The solutions are
given by eqns. (15)—(20).



m=1:

AB, a

AE = T+ iop (15)
m=2:

A8, —Jya, + J,a, + i0fa,

AE~ D - o+ iopT (16)
AB, —Jya, + Jya, + iofa, 7
AE D - o + iopT an
m=3:

A8,

AE ~

—Lya,+ Ly a,— Lyay+Hiop[(Jp+J55)a,—Jpa,+ ] a5] + ’p’a;
D — i0B(Ly+Ly+Ly) — 0T + i0’p?

(18)
A®,

AE
Lpya,— Lyay+ Lyyay HioB[—Jya; + (T +s3)a,— I nas] + w’pa,
D — ioB(Ly+Ly+Ly) — 0T + i0’p?

(19
A8,

AE
— Ly3a,+ Lyyay— Lyyay+iwp[Js,a,=Jpay+ (T3 5)a]+ 0°Bay
D — ioB(L,;+Ly+Ly) — 0T + i0’p?

(20)

The parameters a;, J;, L;, D and T are defined in Appen-
dix I. With an additional set of parameters, A, B, C and §
(also defined in Appendix I) the faradaic impedance,
eqn. (7), can be written as eqgns. (21)—(23), where 1/R, =

m=1

1 1 B ’1
—=_+_—

Z. R T+ iop @D
m=2

1 1 A + i0BB -
Z, R, D - o+ iofT 22)
m = 3:

1 1 A’ + ioBC + 0’p’B

==+ - P TY (23)
Z; R, D —iofS— opT+ io’P

JI/3E. The interfacial impedance, Z;, is obtained by adding
the double-layer capacitance, C,, in parallel with the
faradaic impedance eqn. (24) or (25). An example of this
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1 1
Z = Z + iwCy (24)
Z
S R 2
Z 1+ iwCyZ; (25)

derivation is given in Appendix II, where a mechanism with
two adsorbed intermediates is treated in detail.

Resuits

In the following the characteristics of some mechanisms
will be reported. The aim is to illustrate the influence of an
autocatalytic step and/or a chemical step on the impedance
and polarization behaviour. The mechanisms have been
chosen with the zinc dissolution reaction in mind. The
impedance functions are, as mentioned, often very com-
plex, and in most cases several parameters are free to vary.
It is therefore not possible to view the whole impedance
surface. We have chosen to present the results in three-
dimensional plots where the xz-plane corresponds to the
Z'Z'"'-plane and the y-axis is the potential. Each diagram
shows the resulting spectra for one set of rate constants at
five potentials, 10, 20, 30, 40 and 50 mV, respectively. The
rate constants used in the simulations were chosen so that
one step in the reaction mechanism was made slow com-
pared to the others. In some cases other combinations were
used in order to illustrate certain features. The combina-
tions of rate constants are listed in Tables 1-4. Other
parameters of the corresponding mechanisms are listed in
Table 5. E° is in all simulations equal to 0 mV.

EE-mechanism:

k k,
Zn = Zny; —> Zn}}
-1

Table 1. Rate constants (in mol cm=2 s~') used in the simulation
of the EE-mechanism and the catalytic EE-mechanism.

Fig. K3 K, Kz
1(b)/2(b) 107 107 10-8
1(c)/2(c) 10-8 10-8 4x107®
1(d)/2(d) 10-8 10-¢ 107
1(e)/2(e) 10-8 10-8 10-¢

Table 2. Rate constants (in mol cm=2 s~') used in the simulation
of the EEC-mechanism.

Fig. K; K2, Kz K, Kz

3(b) 1078 10°8 1077 1077 1077
3(c) 1077 1077 1078 1078 1077
3(d) 10-7 107 1077 107 10°8
3(e) 1078 1078 10°¢ 10°® 108
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Table 3. Rate constants (in mol cm~2 s7') used in the simulation
of the ECE-mechanism.

Fig. K K2, K2 Kie K3

4(b) 10-® 10-8 107 1077 107
4(c) 107 1077 107® 1078 107
4(d) 107 107 107 1077 10-¢
4(e) 1078 107 107 107 10-¢

Table 4. Rate constants (in mol cm~2 s7') used in the simulation
of the parallel mechanism.

Fig. K K, K2 K Ko K

5(b) 10°°  10® 107 107 107 107
5(c) 1077 107  10® 1077 1077 1077
5(d) 107 107 107 1077 107  10°®
5(e) 107 107 1077 10®  10°® 107

This reaction has been postulated for the dissolution of
zinc.""? The monovalent Zn}, is an intermediate which is
adsorbed on the surface and is unstable in solution. The
steady-state polarization curve, Fig. 1(a), shows Tafel
slopes of 40 or 120 mV/decade of current (o = %) depending
on the rate-determining step. The impedance of this
mechanism has been simulated with four different combi-
nations of rate constants at five potentials. The impedance

Table 5. Parameters used in the simulations of the mechanisms.

behaviour is shown in Figs. 1(b)-(e). The high-frequency
loop is associated with the charge transfer of the reaction,
while the second is the relaxation of the adsorbed inter-
mediate. This second loop may be inductive or capacitive,
depending on the choice of rate constants. For this mecha-
nism it can be shown that if K, > K, + K_, (31/36 > 0) the
relaxation of Znj; is inductive and vice versa. Thus, if
the first step is in pseudo-equilibrium [Fig. 1(b)], two
capacitive semicircles will appear. If, on the other hand,
the second step is slightly faster, a very small inductive loop
will show up [Fig. 1(c)]. However, this loop is very sensitive
to anodic polarization, or to the choice of K, compared to
K, and K_,. For example, if K,/(K; + K_;) = 5 and an
anodic polarization of more than 30 mV is simulated [Fig.
1(d)], the inductive loop will disappear and the Cole-Cole
plot reveals only the charge-transfer loop. Fig. 1(e) shows
the impedance spectra when all the rate constants are equal
at E=E°. At low potentials a small capacitive loop is
present which disappears upon anodic polarization.

If the time constants are well separated, the diameter of
the charge transfer loop gives the charge-transfer resistance
directly. The diameter of the other semicircle depends on
the rate ratio between the first and second electron-transfer
steps. If the second step is very small compared to the first
a large semicircle in the capacitive area of the Z-plane will
be observed which becomes smaller as the rate of the
second step is increased. If the second step is slightly faster
than the first the diameter of the inductive semicircle goes
through a maximum as the rate of the second electron
transfer is made faster compared to the first. Thus if

Parameter Mechanism
EE EE-catalytic EEC ECE Paraliel E(E/CE)
R1/] = FOlK +(K,— K, FDIK+(4K—K,  FOIK +(Ka— K +K_1)0; ¢ FO[K,+(K_1—K})0, ¢ Fb{K,+(Ky— K+ K_,)0, 4
+K_1)8, 5] +K_1)8] —(Ki—K_2)8,] +H(K3—Ki)0,4 +H(K3—K,)85,66]
al/3e, AK—K—K_,) FK—K,~K_.,) F(K,—K,—K_,) —F(K,+K_,) F(K,—K,—K_,)
ol/38, -FK+K_y) F(Ks—K)) F(K,—K,)
o K, K, K, K Ki
1,88 _
: K+K_+K, K +K_, K-K_, K,—K e K,—K_e
—_— Ki+K_+K, | 1+ Ki+K_ (+ K+ Ky | 14—
K1+K-1+K2 1+K¢;+K_2 1 1 c2 K3+K_& 1 1 2 c3 '(4‘*_’(_';3
K291,ss K(i’81.ss K6361,ss
B2ss Ky+K_, Ks+K_eo Ko+ K_ca
B B B B B
Fodst K+K_+K, K+K_, K+K_,+K, Ki+K_+K, Ki+K_,+Kp+Ks
B B B
Tan2 Kot K Kot K o KtK o
Iss 2K,0, o 2K, s 2(K,01,6s— K_202) 2K,0,1 55+ (K3—K_2)056 (2K, + K 3)8y o5+ (Ky— K_3)8555
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K,>> (K, + K_,) no relaxation from the adsorbed species
will be seen.

Catalytic EE-mechanism:

k
1 2

—_— + 2+ +
Zn =— Zny — Znyy + Zny

-1 91 —26_ 91

This reaction sequence is similar to the one proposed by
Heusler® for the dissolution of iron. The mechanism has
also been suggested by some groups!*' for zinc dissolution
in chloride and sulfate media. The reaction of the Zn},
intermediate formed in the first step is catalysed by the
presence of kink sites in the zink lattice. The Zn atom in
this kink site, Zn,, is simultaneously oxidised to Zn},.
Thus, the number of electrons transfered in the autocata-
lytic step is two. As a result, the Tafel slopes from the
steady-state polarization curve [Fig. 2(a)] are changed from

SIMULATING IMPEDANCE SPECTRA

Fig. 1. Simulated polarization
curves (a) and impedance
spectra [(b)—(e)] for the EE-
mechanism. (Impedance
spectra simulated at 10, 20, 30,
40 and 50 mV.) (a) O, First
step r.d.s.; V, second step
r.d.s.; O, second step slightly
faster than the first; O, all rate
constants equal at E°.

(b) Second step r.d.s. at E°.
(c) Second step slightly faster
than the first at E°. (d) First
step r.d.s. at E°. (e) All rate
constants equal at E£°.

Im Z/Q cm?

Im Z/Q cm?

40 and 120 mV (the non-catalytic EE-mechanism) to 30 and
60 mV, respectively. The mechanism was simulated under
the same conditions as the previous EE-mechanism, and its
impedance behaviour is shown in Figs. 2(b)—(e). The condi-
tions for inductive and capacitive behaviour in the low-
frequency part of the spectrum are the same as for the
EE-mechanism. That is, when the first step is in pseudo-
equilibrium [Fig. 2(b)], the response of the Zn}; species will
be capacitive and vice versa [Figs. 2(c) and (d)]. However,
the diameter of the inductive loop in the catalytic mecha-
nism is larger and remains in a broader Tange of anodic
potentials. The stability of the inductive loop towards
anodic polarization is due to a different potential depend-
ence of the time constant compared to its non-catalytic
equivalent. Fig. 2(e) shows the impedance spectra when all
the rate constants are equal at E= E°. In contrast to the
EE-mechanism, the first step becomes the rate-determin-
ing step at very low overpotentials, which results in an
inductive loop in the low-frequency region that also dis-
appears upon anodic polarization.
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EEC-mechanism:

L + ﬁ; 2+ kes 2+
Zn — Zn}y =— Znzf —> Zn}

k., 8, k., 6

This reaction sequence has been suggested by Cachet and
Wiart'* as an alternative and parallel dissolution path to
the catalytic mechanism. The polarization behaviour is
shown in Fig. 3(a). It can be seen that if the chemical step is
fast compared to the electrochemical steps this mechanism
shows the same steady-state behaviour as the EE-mecha-
nism (40 and 120 mV Tafel slopes). If, on the other hand,
the chemical step is the rate-determining step, the steady-
state curve shows a 30 mV Tafel slope that ends in a
potential-independent region at anodic potentials. The
impedance behaviour is shown in Figs. 3(b)—(e).

6

Fig. 2. Simulated polarization
curves (a) and impedance
spectra [(b)—(e)] for the catalytic
EE-mechanism. (Impedance
spectra simulated at 10, 20, 30,
40 and 50 mV.) (a) O, First
step r.d.s.; V, second step
r.d.s.; O, second step slightly
faster than the first; ®, all rate
constants equal at £°.

(b) Second step r.d.s. at E°.

(c) Second step slightly faster
than the first at E°. (d) First
step r.d.s. at E°. (e) All rate
constants equal at E°.

Im Z/Q em?

Im Z/Q cm?

This mechanism shows an impedance behaviour that dif-
fers in one respect from the other mechanisms: the polar-
ization resistance measured as the difference between the
impedance at zero and infinite frequency becomes negative
under certain conditions. This behaviour is often seen when
metals are passivated by an oxide film.!” The polarization
curves of these metals usually show negative slopes, which
explains the negative polarization resistance. Thus, the re-
sult of the impedance simulation of this mechanism is
somewhat unexpected, since the current slope, although
almost independent of the potential, is still positive. A
possible explanation of this behaviour might be that there is
interference between the two relaxations of the intermedi-
ates. For example, it is noted for this mechanism that the
sign of the steady-state value of ABz,:/AE (the real part of
the complex quantity) is the same as the sign of the polar-
ization resistance. We have for comparison simulated the
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similar EC-mechanism under the same conditions, where
only one intermediate is present. The steady-state value of
AB/AE is always positive in this case. The result is that the
polarization resistance goes towards infinity when the
chemical step is slow, but never turns negative.

The relaxation times of the intermediates in this mecha-
nism were in no cases separated well enough to resolve
them into two semic-circles. Fig. 3(b) shows the spectra
when the first step is rate-determining. At low overpoten-
tials the polarization resistance is negative. As the potential
is increased the loop turns over into the first quadrant of
the impedance plane. In Fig. 3(c) the second step is made
slow at E = E°. As the potential is increased, the diameter
of the second loop is increased. At a certain potential it
turns over in the second quadrant of the impedance plane.
This is due to the increased influence of the chemical step
on the rate of the reaction as the potential is made more
anodic. In Fig. 3(d) the effect of the slow chemical step is
even more pronounced, since the electrochemical steps are
in equilibrium at E = E°. If all rate constants are equal at
E=FE° [Fig. 3(e)], the diameter of the second loop in-

SIMULATING IMPEDANCE SPECTRA

Fig. 3. Simulated polarization
curves (a) and impedance
spectra [(b)—(e)] for the EEC-
mechanism. (Impedance
spectra simulated at 10, 20, 30,
40 and 50 mV.) (a) O, First
step r.d.s.; O, second step
r.d.s.; V, third step r.d.s.; O, all
rate constants equal at E°.

(b) First step r.d.s. at E°.

(c) Second step r.d.s. at E°.

(d) Third step r.d.s. at £°. (e) All
rate constants equal at E°.

20 40
Im Z/Q cm?

Im Z/Q cm?

creases while the charge-transfer resistance remains con-
stant. This behaviour is observed whenever the chemical
step is rate-determining.

ECE-mechanism:

kl kc2 k3
Zn = Zn}, = Zn}* —> Zn%
Ky 6 kg 6 !

If the first intermediate undergoes some chemical reaction
or change before desorption into the solution this mecha-
nism can be formulated. The polarization curves of this
mechanism are shown in Fig. 4(a). If the chemical step is in
equilibrium with the electrochemical steps no changes in
the steady-state behaviour will be observed compared to
the EE-mechanism. If the chemical step is slow the current
will be independent of potential at anodic potentials.

The impedance behaviour is shown in Figs. 4(b)-(e). Fig.
4(b) shows the impedance spectra when the first step is
rate-determining. Only two capacitive loops are observed,

7
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since the relaxation times of the intermediates are of the
same order. As the potential is increased the diameter is
decreased. If the chemical step is slow [Fig. 4(c)], two
capacitive loops are also observed. The second loop in the
low-frequency part of the spectra is, however, increased
upon anodic polarization, while the charge-transfer loop
remains fairly independent of the potential. Fig. 4(d) shows
the spectra when the second electron transfer is rate-deter-
mining. One of the relaxations of the intermediates be-
comes inductive in this case and three separate loops are
resolved. We noted that this inductive loop showed up
whenever 31/30,,++ [= F(K; — K)] for this mechanism was
negative. Fig. 4(e) shows the spectra when the chemical
step is in equilibrium. The fast chemical step makes the
relaxation times of the adsorbed intermediates comparable
with the relaxation of the charge-transfer process. It is
therefore notable that two loops appear in the spectra. This
is discussed in the next section. Negative polarization
resistance was never observed in the simulation of this
mechanism.

Fig. 4. Simulated polarization
curves (a) and impedance
spectra [(b)—(e)] for the ECE-
mechanism. (Impedance
spectra simulated at 10, 20, 30,
40 and 50 mV.) (a) O, First
step r.d.s.; O, second step
rd.s.; V, third step r.d.s.;

[, second step in equilibrium at
E°. (b) First step r.d.s. at E°.

(c) Second step r.d.s. at E°.

(d) Third step r.d.s. at E°.

(e) Second step in equilibrium
at E°.

Im Z/Q cm?

Im Z/Q cm?

Parallel E(E/CE)-mechanism:
—2) Znaz;

Zn =— Zn},
k_, 6,

kc3 ” k-c3
k

4
*+ 2+
Znygt —> Zng
2

This mechanism consists of two dissolution routes. One
route is the same as the EE-mechanism and the other is the
same as the ECE-mechanism. Both mechanisms have been
discussed earlier, separately. The first electron transfer and
the Zn;, species are common for both paths. Fig. 5(a)
shows the polarization curves for the mechanism when
different steps are rate-determining. They are all rather
similar, with 40/120 mV Tafel slopes. When the second step
in the EE-path is rate-determining at E° there is a limited
potential region where the chemical step becomes impor-
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tant for the reaction rate. Figs. 5(b)—(e) show the simulated
impedance spectra. In Fig. 5(b) the first step is rate-deter-
mining and a small capacitive loop is seen in the low-
frequency part of the spectrum. Both the charge-transfer
loop and the capacitive loop are reduced upon anodic
polarization. If the second step in the EE-path is rate-
determining [Fig. 5(c)], there is also just one capacitive
relaxation observed in addition to the charge-transfer loop.
The charge-transfer loop is, however, not so sensitive to
polarization, indicating the influence of the chemical step
observed in the polarization curve. In Fig. 5(d) the electron
transfer following the chemical step is rate-determining.
Two relaxations can now be seen in the low-frequency part
of the spectrum. One of them is capacitive, while the other
is inductive. If the chemical step is slow, the important
dissolution route is the same as in the EE-mechanism, and
the spectra are similar to the spectra of that mechanism
under the same conditions.

SIMULATING IMPEDANCE SPECTRA

Fig. 5. Simulated polarization
curves (a) and impedance
spectra [(b)—(e)] for the
E(E/CE)-mechanism.
(Impedance spectra simulated
at 10, 20, 30, 40 and 50 mV.)
(a) O, First step r.d.s.; O,
second step r.d.s. (K,-step);
V, fourth step r.d.s. (K;-step);
0, chemical step r.d.s. at E°.
(b) First step r.d.s. at E°.

(c) Second step r.d.s. (K,-step)
at E°. (d) Fourth step (K,-step)
r.d.s. at £°. (e) Chemical step
rd.s. at E°.

Im Z/Q cm?

Im Z/Q cm?

Discussion

The analysis of impedance spectra may be performed in at
least two ways. The spectrum can be fitted by a least-
squares method to some of eqns. (21)-(23), which will give
the corresponding parameters A, B, D, T... This is a non-
linear problem which requires sophisticated mathematical
tools* and will not be treated here. The second and more
common approach is to use electrical equivalent circuits.
If the relaxations of the experimental spectra are well
separated it is usually no problem to estimate the values of
the different components for an arbitrary circuit. In order
to obtain information about the kinetics for the electro-
chemical reaction the electric quantities associated with the
circuit must be related to the parameters in the cor-
responding admittance equation. This can be done by
identifying the impedance expression of the circuit with the

* Non-linear least-squares fitting has been used in IS to evaluate
the components of the proposed equivalent circuits.!



AHLBERG AND ANDERSON

(@)

Cp
S — |
—{ 1}
Ro
© | I
1 I
Cc1 C2
T — —
Rt
— 1 1+
R1 R2

Fig. 6. (a) Equivalent circuit originally suggested by Gerischer to
describe a charge-transfer process with one adsorbed
intermediate. (b) Equivalent circuit for a charge-transfer process
with two adsorbed intermediates.

corresponding analytical solution of the model in the
impedance domain. The choice of the circuit is not crucial
as long as its impedance can be expressed in the same form
as one of the analytical solutions. The equivalent circuit
used with this approach should therefore not be regarded
as a model of the electrochemical system but merely as a
mathematical tool to obtain information about parameters
describing the system.

An example of this information transfer is the evaluation
of the time constants associated with the adsorbed inter-
mediates from the experimental spectrum. Armstrong has
discussed this problem for reactions with one adsorbed
intermediate.” The faradaic admittance can be written as
eqn. (26), where R, is the infinite-frequency charge-

1 1 1
Y‘_R,,+R01+iu)t

(26)

transfer resistance and R, an additional resistance at zero
frequency. This expression is of the same form as the
analytical solution for the faradaic admittance presented
earlier in this paper [eqn. (21), R, = T/B and T = UT].
If the equivalent circuit suggested in early works of
Gerischer®?! [Fig. 6(a)] is used, the time constant may be
obtained from eqn. (27), where w* is the frequency

t=——— @7)

obtained at the maximum of the second semicircle. R, and
R.. are related to the parallel resistance R, and capacitance
C, in the circuit in Fig. 6(a) by eqn. (28).

—-R?, —Ryt

P“R+R. " R

R (28)
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The situation becomes more complex when this treat-
ment is generalized to included additional relaxations. The
analytical solutions of the faradaic admittance for two or
three relaxations [eqns. (22) and (23)] show that the num-
ber of unknown parameters J;; increases by a power of two
to the number of relaxations. Thus, it is not possible with-
out any assumptions to obtains information concerning the
individual time constants associated with the adsorbed
intermediates. However, since the parameter T is the sum
of the inverse of time constants involved in the faradaic
process, it is possible to estimate the slowest time constant
if it is well separated from the other constants. Suppose we
want to estimate the relaxation times for a chemical reac-
tion with two intermediates from a spectfum. The imped-
ance of the circuit in Fig. 6(b) can be written as eqn. (29),

Z.=R + [(R, + R))T, + io[(R;T, + Ryt))/vTy) 29)

/1, — 0 + io[(r; + 1)1

where T, and 1, are R,C, and R,C,, respectively. If these
values can be estimated from the experimental spectrum
we can transform eqn. (22) into the impedance plane,
eqn. (30). Eqns. (31)-(34) can then be set.

~RA - iopR:B
Zi= R+ T RA— 0 + i0B(T + RB) (30)
1 /1 1
= — _— 4+ —
4= "ReG \R R, ¢
1 /1 1
e — =+ = 2
B=-ml\c*sg (32)
L&
= A (33)
11
=(—+-) -R
s+) -re (34)

These expressions may now be identified with the cor-
responding parameters derived from the particular mecha-
nism of interest. If we look at the relaxation times of the
adsorbed intermediates we note that these are related to T’
by eqn. (35), where T4y = —1/;; and T4, = —11y. If

T = 1ty + Uy, (35)

Tags1 > T then T = 1l/t,,, where 1., and t,4, are the
time constants associated with the adsorbed intermediates.
The time constant t,4, is then from eqn. (34), given by
eqn. (36).

1
Tads2 = 1 1
—+—] —RB (36)

L)




The weak point here is of course the justification of the
assumption that the time constants T, and t,4, are of
different magnitude. We have in fact no information about
these time constants and their relative magnitudes. Never-
theless, we think the derivation is motivated, because it
shows that the relationship between the observed experi-
mental time constants and the time constants of the
adsorbed intermediates, as they are defined from the deriv-
ation of the impedance, is not straightforward. For
example, the following fact was noticed when the ECE-
mechanism was simulated with the chemical step in equilib-
rium. The time constants of the two intermediates, derived
from the calculation of the impedance, were approximately
the same as the time constant of the charge-transfer process
coupled with the double-layer capacitance. Consequently,
we expected one loop in the impedance plane diagram.
Two capacitive loops were, however, observed. Analysis of
the spectra in terms of the equivalent circuit shown in Fig.
6(b) gave the following values of the components involved:
R,=0.33Q,1,=4.95x10"%s(=>C,;=15mF),R,=22.2Q,
1, = 2.99x107% s (=> C, = 1.35 mF) and R, = 47.1 Q,
1, = 7.06x107% 5. The time constants t, and T, should be
compared with the time constants T, and 1,4, associated
with the intermediates. These were calculated from the
derivation of the impedance and are T,45 = Tuo =
9.80x107%s.

The use of the charge-transfer resistance or polarization
resistance in corrosion rate measurements with IS was dis-
cussed in the literature some years ago.”?? The French
school, with Keddam et al., argued for the use of R, in
order to obtain the true corrosion rate, while Lorenz et al.
stated that R, should be used instead. The problem was, as
far as we can see, an empirical one, since other methods
such as weight loss determinations and solution analysis did
not agree with the impedance data. Although the main
purpose of this paper is not the determination of corrosion
rates, we became interested in how R, and R, were related
to the steady-state current in order to investigate the possi-
bility of estimating Tafel slopes from these quantities. In
principal this should not be a problem.

The inverse of the charge-transfer resistance at steady
state, 1/R,, is defined by eqn. (37), where all other state

1 dI

R d

F

(37

m

variables depending on the potential, E, are kept fixed.
The inverse of the polarization resistance, 1/R,, is defined
by eqn. (38), where i is the number of state variables,

11 al,, 89X,

R =R ‘23X, oF

i iss

(38)

X, that depend on the potential. With these definitions a
simple and inverse relationship between R, and I for all
potentials can be derived. The Tafel slope could then be

SIMULATING IMPEDANCE SPECTRA

estimated by In (10)R,/ or the variation of —log R, with the
potential. The R, value can only be used if the potential
is such that no reaction step in the mechanism is in equi-
librium with its adjacent step or steps. We have, for simple
and pure electrochemical mechanisms such as the con-
cecutive EE-mechanisms (1) and (2), which are often used
in metal dissolution reactions, investigated the potential
dependence of R, and R,, and the statements above hold as
long as the mechanisms consist of electrochemical steps. If
potential-independent steps are introduced into the mecha-
nism the simple relationship between R, and I, disappears
and the Tafel slope has to be estimated through R,, which in
turn can only be used at potentials far from equilibrium.

Conclusions

(1) A combination of polarization and impedance measure-
ments constitutes a powerful tool in mechanistic analysis.
(2) With a mechanism involving two or more intermediates
it is not possible to obtain an unambiguous relationship
between the experimental time constants-and the time con-
stants obtained from the model. (3) There is a simple and
inverse relationship between R, and the steady-state cur-
rent if the mechanism consists of electrochemical steps
only. This simple relationship is lost when chemical steps
are introduced into the mechanism, which in turn makes it
impossible to use the value of In (10)R, [ as a true Tafel
value.
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Appendix |

List of symbols used.

o transfer coefficient

b azF/IRT

B maximum surface concentration of species i
Cyq  double layer capacitance

E potential

E equilibrium potential

E, steady-state potential

F Faraday constant

() phase angle

f frequency

i index of adsorbed species

1 current density

I faradaic current density

I steady-state current density

i complex number, V-1

K, normalized rate constant at equilibrium potential
k,  rate constant at equilibrium potential
K., normalized chemical rate constant

11
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K, normalized rate constant

k, rate constant

m number of adsorbed species in a certain mechanism
v normalized rate of adsorption

0; fraction coverage by species i

6, fraction coverage by species i at steady state

R,  charge transfer resistance

t time

T; time constant of the relaxation by species i

() angular frequency, 2xf

Y,  faradaic admittance

z number of electrons involved in a reaction step
Z;  faradaic impedance

Z,  interfacial impedance

Parameters used in the impedance calculations, common for
all mechanisms.

A = mady, + mady, — mady, — mayd,
A" = —maL,, + maL, — ma;Ly,
+ mya\Ly; — myay Ly + mpasLy,
= mya Lz + myay Ly, — maasLy

de;

a JR—

dt

&% ="3g > the right-hand side of the linear equation
system

m
B = Z mga;
i=1

C=m[b(Uy + Jp) — &)y, — arJyy
+ my[—ady + a)(Jy; + Ji3) — asly]
+ my[—a sy — aJy, + ay(Jy + Tp)]
D = the determinant of the matrix J

de,
N\
J —3

¥ a0

J

; these coefficients give the coefficient ma-
trix, J, that determines the linear equation
system

L; = the subdeterminant of the matrix that is left when the
ith row and jth column of J are deleted

ol

mi:‘a?i

12

Appendix Il

Derivation of the impedance. The inverse of the faradaic
impedance, Z;, is defined as 1/Z; = dI/dE when the elec-
trode is pertubated by a signal around the steady-state
potential. If the signal is a sine-wave potential E with a
small amplitude [E| it can be expressed as OF = |SE]|
exp(iwf), where w is the angular frequency (s™') and
i=V-1. The signal causes the current, I, and all other
state variables depending on E, to vary with the same
frequency around their steady-state values. The faradaic
impedance can be calculated using the Taylor expansion
limited to the first order of the expression that describes the
current flowing through the electrode. The derivation is
made under assumptions that are commonly used for metal
dissolution reactions and can be summarized as follows:
(1) kinetically controlled reaction steps which follow the
Tafel law, and (2) use of the Langmuir adsorption isotherm
for the adsorption—desorption of the intermediates.
Consider the following mechanism:

k, k,, cat.
Zn = Zn}; —> Znj +Zn} +2¢
k, 8, Zn, O,
kc4 k—c4

3
*+ 2+
Znyt —> Zn%
2

The rate of the individual reaction steps, K, is the product
of the heterogeneous rate constant, k,, and the concentra-
tion of the reacting species. The rate constant, k,, is related
to the potential by k, = k; exp (b,E), where k; is the rate
constant at E° and b, the Tafel coefficient. If the K, reac-
tion only takes place on bare surface sites, the charge- and
mass-balance are given by eqn. (A1) and eqns. (A2) and
(A3), respectively, where F is the Faraday constant. The

I = F[K,(1-6,-86,) + 2K,6, + K6, — K_.6] (A1)

de,
B a K, (1-8,-6,) + K_8, — (K_; + K,)8, (A2)

de,
ﬁz Gt— = K.0;, — (K_ + K3)92 (A3)

steady-state solutions, 6, , of d8/dt = 0, are given by eqns.
(A4) and (AS). Substitution of 6, by the corresponding



K,
0, = K - K. (A9)
Ki+ K+ K, 1+m
—c4 3
e _ Kc491
2T K .+ K, (A5)

steady-state value into eqn. (Al) yields the steady-state
current, which can be written as eqn. (A6). This equation
I, = F[(2K, + K.)8, + (K5 — K_.)8)] (A6)
is used for the simulation of the steady-state current. The
first-order Taylor expansion of eqn. (Al) divided by AE
gives the inverse of the faradaic impedance, eqn. (A7),
1 al 2 (3l A6,
7 (), 2 (5), 5 *7

i=1

where the first term is the inverse of the charge-transfer
resistance. If the transfer coefficients are the same for all
steps, the charge-transfer resistance can be written as
eqn. (A8). (31/38)); are easily obtained from eqn. (A1) as
eqns. (A9) and (A10). The last factor in eqn. (A7),

1
— = Fb[K,(1-6,-0,) + 4K,0, + K_8, + K;0,]

A8
R (A8)
al;
a—el =FQ2K,- K, - K_) (A9)
3l
— = -K A10
o = RK, ~ K) (A10)

AB/AE, is obtained from eqns. (A2) and (A3) utilizing the
result that, for a sine-wave variation of 6,, eqn. (All1)
holds.

o, d
A— = — AB, = inAS,

dr (ALD)

Thus the set of linear equations (A12) and (A13) can be

) AB, AB, )
A4, + i) AE + B, E =C, (A12)
0, ] A8,
A, AE + (B, + inB,) AE = C, (A13)

set up, in" which the coefficients are given by eqns.
(A14)-(A19).

A=K +K,+K, (A14)

SIMULATING IMPEDANCE SPECTRA

B, =K, -K_ (A15)
C, = b[K, — (K, — K_))8, — K,8,] (A16)
A, = -K, (A17)
B,=K,+K_, (A18)
G, = -bK3, (A19)

The time constants associated with the relaxation of the
adsorbed intermediates are obtained from these equations
by the relationships t, = f,/A, and 1, = ,/B,.

Solving the set of equations with respect to AB/AE and
substituting the result into eqn. (A7) yields the faradaic
admittance, 1/Z,, which after addition of the double-layer
capacitance, C,, in parallel to Z; gives the interfacial
impedance, Z,, via eqn. (A20) or (A21).

1 1

—_——=— 4 1

zZ°z inCy (A20)
Z

4= TTiwzc, (A21)

In order to obtain AB/AE, using the analytical solutions
presented earlier, it is preferable to use a computer algo-
rithm which can handle determinants. We have used the
adjoint method for the solution of the linear equation
system. The parameters D, J and L are determinants and
subdeterminants of the coefficient matrix given by the
linear equation system. When the first set of parameters
are calculated these can be substituted into the next set,
giving after the addition of the double-layer capacitance,
the total electrode admittance. The impedaﬁce is obtained
by inverting the admittance expression and separating the
result into real and imaginary parts. The electrode imped-
ance can now be calculated as a function of the frequency
for a given set of rate constants and at a certain potential.
These calculations are easily done on a personal computer,
and by using the analytical solutions given previously the
calculations can be performed much faster in comparison
with the use of numerical solutions.
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