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In electrochemical digital simulations'? involving, along
with diffusional transport, homogeneous chemical reac-
tions, there is a small problem of tactics in the discretisation
of the dynamic equation when using the simple explicit
method which, while not being very efficient, is frequently
used because of the ease of its implementation.

For clarity, take the simple Reinert-Berg experiment,’ in
which in effect a diffusion-limiting potential jump is applied
to a species in solution, undergoing first-order chemical
decay (reactions (1) and (2)], where A is the electroactive
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and decaying substance, B its reduced form and P the decay
product, of no further interest here. In a one-dimensional
cell arrangement, the dimensionless dynamic equation is
eqn. (3) in which C is the concentration of A normalised
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by its initial bulk value, T is the time normalised by the
abitrary observation time t, X is the distance normal to the
electrode normalised by the characteristic diffusion length
V(D7) and K = kt is the dimensionless homogeneous rate
constant (see Ref. 2 for details). Boundary conditions are
given by eqn. (4). The system has an analytical solution,??
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so it is easy to check a given simulation technique.

In digital simulations of systems such as this one, C is
represented by a number of sample points C; (i = 0, 1, ... n)
at the (dimensionless) distances 0, H, 2H, ... nH from the
electrode. Given computed values of C at time T, a new
array C' at time T + 8T is to be computed. Eqn. (3) must
be discretised, and the small problem enters here. One can
perform the calculation for, say, point C; in what we call
‘parallel’ or ‘sequential’ mode.? In parallel mode, old val-
ues of C are used for both diffusional and chemical chang-
es, and the discrete expression is given by eqn. (5), where

C!= C + MCy, — 2C, + C,,,) — KdTC, (5)

A = 8T/H? (again, see Ref. 2 for details). This strategy
implies a total separation of diffusional and chemical
changes, although we know that they are in fact coupled. A
crude attempt at coupling, the sequential method, has been
common practice.!** Here, one allows first for diffusional
changed, then uses the resulting intermediate C-values to
compute the chemical changes as well: if C} is the interme-
diate diffusion-augmented value, we have eqns. (6) and
(7). This device has been discussed in some detail by Niel-
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sen et al.,’ who provide a non-rigorous justification for it by
means of a counter-example. It does appear to give some-
what better results than the parallel method, but so far no
consistency proof has been shown for it. This communi-

cation provides such a proof.
We shall now describe a third, hypothetical, method, the

transformational algorithm, employed previously.® It is hy-
pothetical because it is not expected to be used, but does
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provide the desired consistency proof of the sequential
algorithm. Both sides of eqn. (3) are multiplied by eXTto
give eqn. (8), and noting that eqn. (9) holds, eqn. (8) can
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term for the interval 8T for C; as eqn. (11), and the right-
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hand side as usual, the discrete expression of eqn. (10) for
C! becomes eqn. (12). Dividing throughout by eX7 finally

C;CK(TH"‘) = C,CKT + CKTA.(C,-_I - 2C, + C,‘+1) (12)
yields eqn. (13). Combining eqns. (6) and (7) for the se-

C = e KT [C, + MCiy, — 2C; + Ci+l)] (13)

quential algorithm, we obtain eqn. (14), which, for small
C = (1-KdéT)C!

= (1-K37T) [C, + MC,_; — 2C; + C,y)] (14)
K3T approaches eqn. (13). Since no weakening assump-
tions or approximations were made in deriving eqn. (10)
and the discretisation eqn. (11) is consistent, this constitu-
tes a mathematical consistency proof of the sequential algo-
rithm.

Fig. 1 shows simulation errors for the parallel, sequential
and transformational algorithms, as well as for the third-
order Runge-Kutta technique’ for comparison. It is seen
that the sequential algorithm is a little superior to the
parallel one, but for larger K values, where the approxima-
tion (1—K8T) = ¢ 7 no longer holds, the two methods
are equally poor and converge towards each other. The
transformational method can clearly cope with any K
value: not surprisingly, since in this case, for large K, when
the chemical reaction dominates diffusional changes, eqn.
(13) in fact approaches identity with the analytical solution.

Now we do not need to simulate the Reinert-Berg sys-
tem, since we have the solution. In simulation practice,
however, we meet systems of dynamic equations for several
species. A simple example is the catalytic system of reac-
tion (15), for which the dynamic equations are egns. (16)
and (17).
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Fig. 1. Logarithm of the magnitude of the relative error in
computed current for the Reinert—Berg system for a range of
K-values, for the methods (a) parallel algorithm, (b) sequential
algorithm, (c) transformational algorithm and (d) Runge—Kutta
integration.” The six-point current approximation was used to
compute the currents.?

A + ne” — B (reversible) (15)
B —If> A
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More complex systems are, in fact, the rule. (See, for
example, Refs. 2 and 8.) In these cases, the transforma-
tional algorithm can be applied to at most one species’
equation, but the sequential method can be used for all: in
the above catalytic case, eqns. (16) and (17), one would
compute Cy; by eqn. (6), then derive the homogeneous
kinetic term in eqn. (7) from this and use it for both species
A and B as in eqns. (18)—(20).

Gy, =Cg,; + )"(CBJ—I - 2CB.|' + CB.i+l) (18)
G, = C'g; — KOTCy; (19)
C;u = CA.i + }"(CA‘FI - 2CA.i + CA.iH) + KGTCII!J (20)

Thus, diffusional and chemical changes are approxi-
mately coupled with a technique shown above to be consis-
tent with the model for small K8T. As seen in Fig. 1 [for
the Reinert-Berg system, eqns. (1) and (2)], the method
constitutes a modest improvement for K values up to about
unity. Above this, better metods, such as whole-equation
Runge-Kutta?’ or Crank-Nicolson,? should be used, or, in



extreme cases, the heterogeneous equivalent method of
eliminating the homogenous terms from the dynamic equa-
tions‘6.9.10
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