Oxidation of Aromatic Compounds by Diazonium Ions. Unexpectedly Facile Electron Transfer Reactions

Mogens L. Andersen, Kishan L. Handoo and Vernon D. Parker

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300

 Arenediazonium ions undergo facile reduction by electron transfer reagents, potassium ferrocyanide and decamethyl-ferrocene. In the course of examining these ions as convenient photostimulated charge-transfer oxidants of aromatic compounds to generate cation radicals, we discovered that anomalously rapid oxidations occurred under dark conditions. The reactions were carried out in the presence of CCl₄ to trap aryl radicals and trifluoroacetic acid to stabilize the resultant aromatic cation radicals. Although we have observed the oxidation of a variety of aromatic compounds by O₂N-C₆H₄-N₂⁺ in the dark we have limited our kinetics and mechanism studies to substrates giving rise to cation radicals stable under the reaction conditions.

The kinetic data in Table 1 summarize our results for the oxidation of perylene (1), 2,3,6,7-tetramethoxy-9,10-dimethanlanthracene (2), 2,3,6,7-tetramethoxy-9,10-diphenylanthracene (3) and 2,3,6,7-tetramethoxyanthracene (4). The second-order rate constants were evaluated for the appearance of the cation radicals by monitoring absorptions in the visible using a Hewlett-Packard diode array spectrometer. The data in Table 1 refer to reactions carried out in CCl₄–trifluoroacetic acid (3:2 v/v) because of the high stabilities of the cation radicals in this medium but which take place at comparable rates in acetonitrile. For example, the second-order rate constant for the oxidation of 3 in acetonitrile at 298 K was observed to be 0.41 M⁻¹ s⁻¹, 40% greater than that in Table 1. A linear relationship was observed between log K and log [CCl₄] for the oxidation of I in trifluoroacetic acid. The rate constant in trifluoroacetic acid extrapolated to [CCl₄] = 1 M was observed to be 85 M⁻¹ s⁻¹, 40 times greater than the value in Table 1. Reactions were carried out in an argon atmosphere.

Table 1. Electrode potential and kinetic data for the oxidation of aromatic compounds by p-nitrophenyl diazonium tetrafluoroborate.

<table>
<thead>
<tr>
<th>Aromatic compound</th>
<th>E°'</th>
<th>k₉</th>
<th>kobs</th>
<th>ΔH(act)</th>
<th>ΔS(act)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.770</td>
<td>10⁻¹⁵</td>
<td>2.17</td>
<td>22.4</td>
<td>18.0</td>
</tr>
<tr>
<td>2</td>
<td>0.386</td>
<td>10⁻⁸</td>
<td>36.6</td>
<td>17.8</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>0.525</td>
<td>10⁻¹¹</td>
<td>0.29</td>
<td>19.0</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>0.556</td>
<td>10⁻¹¹</td>
<td>13</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Measured by derivative cyclic voltammetry vs. Fc⁺/Fc²⁺ in acetonitrile/Bu₄PF₆ (0.1 M) at 298 K. *Maximum possible rate constant for outer-sphere electron transfer estimated from the equilibrium constant obtained from the electrode potentials. Comparable values are obtained by application of the Marcus equation. *Second-order rate constant (M⁻¹ s⁻¹) at 298 K in CCl₄/trifluoroacetic acid (3:2 v/v). The rate constant in acetonitrile for substrate 3 was about 40% higher than in this medium. *In kcal mol⁻¹. *In cal K⁻¹ mol⁻¹. This value is less precise than the order rate constants since ΔS* is not stable on the time scale of the kinetic experiments. *The potential of Fc⁺/Fc (ferrocenium/ferrocene) is +0.29 V vs. SCE.

To whom correspondence should be addressed.

Acta Chemica Scandinavica 45 (1991) 983-985

983
reaction suggests that the oxidation does not involve a mechanism initiated by electrophilic attack on the aromatic compound by diazonium ion to form the o-bonded complex (1).

\[
\text{O}_2\text{N-C}_6\text{H}_4\text{N}_2^+ + \text{Ar-H} \rightarrow \text{O}_2\text{N-C}_6\text{H}_4\text{N}_2^-(\text{H})\text{Ar}^+ \\
\rightarrow \text{O}_2\text{N-C}_6\text{H}_4 \cdot + \text{N}_2 + \text{Ar-H}^+
\]

(1)

The kinetics of the reactions are characterized by enthalpies of activation of about 20 kcal mol\(^{-1}\) and entropies of activation as high as 18 cal K\(^{-1}\) mol\(^{-1}\) depending strongly upon the structure of the aromatic compound. The observed second-order rate constants are as much as 10\(^{15}\) times greater than maximum values predicted for the outer-sphere electron exchange reactions. The electrode potential differences \(\Delta E^\circ\) recorded refer to half-reactions involving the oxidation of the aromatic compounds and the reduction of the diazonium ion.

A recent detailed study of the voltammetric reduction of arenediazonium ions in aprotic solvents using a battery of techniques\(^7\) has clearly shown that the potentials reported earlier\(^8\) refer to electro-adsortion rather than to diffusion processes. The peak potential for reaction (2) in DMF at 298 K was reported to be \(-0.405\) at a voltage sweep rate of 500 mV s\(^{-1}\).\(^7\) The rapid decomposition of the resulting diazynyl radicals insures that the reversible potential for reaction (2) is at a more negative potential.\(^9\) A kinetic shift of the peak potential for reduction of the diazonium ion as great as 200-300 mV can be expected for a rapid first-order reaction of the diazynyl radical. If a correction is made for the probable kinetic shift, \(k_{\text{max}}\) (Table 1) becomes considerably smaller. For example, corrections of 180 and 300 mV gives rise to 10\(^5\) and 10\(^9\), respectively, decreases in \(k_{\text{max}}\).

The observation that reactions, the overall result of which is electron exchange between reactants, can occur much more readily than predicted by the thermodynamic electrode potential differences points out a more general problem. Electrode potential differences for electron transfer reactions can be broken down into the respective half-reactions as in Scheme 1. The equilibrium constant for reaction (5) is then calculated from the difference in poten-

\[
\Delta G^\circ = \\
A^+ + e^- \rightleftharpoons A^- \\
B \rightleftharpoons B^+ + e^- \\
A^+ + B \rightleftharpoons A^- + B^+
\]

(3, 4, 5)

\[
\Delta G^\circ = -R \ln K(A^+/B) \\
\Delta G^\circ = -F \Delta E^\circ(A/B) \\
\Delta G^\circ = -F \Delta E^\circ(A-B)
\]

(6, 7, 8, 9)

Scheme 2.

During the oxidation of aromatic compounds by \(\text{O}_2\text{N-C}_6\text{H}_4\text{N}_2^+/\text{Ar-H}^+\) the irreversible reaction corresponding to (10) is the unimolecular expulsion of dinitrogen from the diazynyl radical [eqn. (11)]. Diazynyl radicals are known to have very short lifetimes\(^10\) and reaction (11) is clearly irreversible.

Another interesting aspect of the kinetic results is the strength that a linear relationship is observed between log \(k\) and \(F \Delta E^\circ\) when the data for 3 are not included.\(^11\) The slope of the correlation line \((r = 0.996)\), on the other hand, corresponds to about a fifth of that predicted by the Marcus equation (1/2.3RT) for endergonic electron transfer.\(^12\) This could be a consequence of the fact that the electron transfer mechanism (6)–(8) is interrupted by the rapid irreversible reaction (11).

It has recently been concluded that inner-sphere electron transfer mechanisms involving radical ions should have an inherent preference over the corresponding outer-sphere mechanism unless intermolecular overlap is precluded for steric or other reasons.\(^13\) Transition-state overlap energies for inner-sphere electron transfer between radical anions and neutral compounds were estimated to fall in the range 2.3–7 kcal mol\(^{-1}\). It would appear to be reasonable to suggest that the diazonium ion–neutral molecule electron-transfer transition states have overlap energies in this range since weak charge transfer complexes can be detected.

Acknowledgements. We thank the National Science Foundation (CHE-8803480), the Danish Natural Science Research Council and the Danish Research Academy (M.L.A.) for generous support of this research.
References

1. On leave from the Department of Chemistry, University of Kashmir, India.
6. A bonded mechanism was considered and rejected for the oxidation of hydroquinone by arenediazonium ions.2b
9. The reduction potentials of the arenediazonium ions were not reported in acetonitrile but the data reported in Table V of Ref. 7 are indicative that the potentials are more negative in that solvent.
11. The rate constant for substrate 3 falls below the correlation line, presumably because of steric effects not present in the other substrates.

Received May 2, 1991.