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Two novel three-dimensional periodic nodal surfaces are calculated from simple
Fourier series, corresponding to the space group symmetries Pm3n and la3d, respec-
tively. The surfaces are intersection-free space partitioners and they have the unique
property of enveloping the well-known threefold and fourfold rod packings, which
represent important structural principles. Indeed, in the labyrinths the appropriate
Fourier series generate maximal amplitudes along quasi-continuous lines or line
segments which correspond to the graphs of well-known networks.
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Recently it was shown by von Schnering and Nesper that
periodic nodal surfaces of Fourier series, PNS,! can be
understood as fundamental invariants of structured matter.
Of course, close relationships exist to periodic potential
surfaces, POPS,* as well as to periodic minimal surfaces,
whose fundamental significance to chemical structures was
recognized by Andersson.>® However, there is one impor-
tant property of the periodic nodal surfaces which makes
them different from the POPS: The PNSs are space parti-
tioners which require no assumptions about a structure.
Because of the zeros of the Fourier series, they do not
contribute to any physical or chemical force in a structure.
They only contain the symmetry in space, which is included
in the phase angles a,,, of the few Fourier coefficients.?
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The general Ansatz? is given in eqn. (1), where [$] is the
structure factor, a, is the phase angle, 4 and r are coor-
dinates in reciprocal and real space and |®|/|A| is a measure
of the relative reciprocal length.

When considering this idea, we first tried to reproduce
the periodic zero potential surfaces (POPS) by eqn. (1)
with as few Fourier coefficients as possible. The first aston-
ishing result was the perfect reproduction of Schoen’s gy-
roid (corresponding to the POPS Y**) only with |S(100)|
=1, a = /2 and generating symmetry /4,32.° Eqn. (1) sim-

sinX cosY + sinY cosZ + cosXsinZ = 0 2)
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ply becomes eqn. (2), where X = 2mx etc.’ Numerous other
examples were tested,'” and lead at least to the general
concept of the periodic nodal surfaces as fundamental in-
variants of structured matter.’

The cubic POPS L-Y** was found in the course of
systematic studies carried out to understand the influence
of distinct point configurations, PK.!*!! This surface, which
is shown in Fig. 1, looks like a Weihnachtsstern (Christmas
star) along [111], and runs ‘parallel’ to the gyroid Y** like
an envelope. As a POPS, the surface was first generated
with the formal point charge distribution: (1+) at position
L,(16a) and (1-) at position Y**(16b) of space group Ia3d.
The corresponding structure factor listing shows that, close
to the reciprocal origin, the reflections (211) and (220) are
mainly important, with F(211) =1, a =0 and F(220) =2,
a=0."" With these two coefficients the surface L-Y** is
well-reproducible from eqn. (1). Later is was found that
with the ratio F(211)/F(220) = 1, the topological essentials
will not be changed,’ but that now the resulting amplitudes
of the Fourier series indicate very important alterations of
the quasi-charge distribution in space. Namely, the ampli-
tudes remain nearly constant when changing the positional
parameters within the paths of the line segment config-
uration spanned by the Y** points, i.e. one moves on a
graph between the equivalent points of the configuration
Y** (3 43 etc.) in the space group Ia3d (cf. Fig. 1). In other
words, the PNS of simple Fourier series may correspond to
“charge distributions” which are not necessarily distribu-
tions of “point charges”. The PNS obviously yield a proce-
dure to define in general the shape of the topological pat-
tern, which generates the space partitioner and which is
formed by these (Tables 1 and 2).
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Fig. 1. Periodic nodal surfaces, PNS, and their relationship to line and line segment configurations. (A) The I,-Y** surface
(Weihnachtsstern) which is a ‘parallel’ surface to the gyroid-like Y** surface along [111]. (B) Part of the I,-Y** surface and the graph
of the line segment configuration Y;; in the red labyrinth along {001]. (C) The I,~Y** and Y** surfaces together along [111]. (D) The
new surface C(l,-Y**) along [111]. (E) Part of C(l,-Y**) and the graph of the line segment configuration S* in the red labyrinth along
[111]. (F) C(I,=Y**) and the graph of the line configuration Y} in the blue labyrinth along [111]. The Y line configuration
corresponds to the famous fourfold cubic rod packing. (G) The new surface W,I-W,,. (H) W,I-W,, and the graph of the line segment
configuration W,, in the blue labyrinth. This graph corresponds exactly with the Pt,0, partial structure of Na,Pt;0,. (1) The W, I-W,,
surface envelopes the threefold cubic rod packing in the yellow labyrinth, represented by the line configuration W,.
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SPACE PARTITIONER FOR ROD PACKINGS

Table 1. Representations of the three-dimensional nodal surfaces (w =|®{?/|h|?).

Name hkl |S|-w a Generating fix,y,2) =0 Symmetry
space group of surface
y* 110 1 n/2 14,32 sinXcosY + sinYcosZ + cosXsinZ=0 la3d
I~Y** 21 1 0 1a3d — 2[sin2X cos Y sinZ + sin X sin2Y cos Z + cos X sin Y sin2Z)  la3d
220 1 0 + cos2X cos2Y + cos2Y cos2Z + cos2X cos2Z = 0
C~Y*™) 211 1 n la3d + 2[sin2X cos YsinZ + sinX sin2Y cosZ + cosXsinY sin2Z]  la3d
220 1 0 + cos2X cos2Y + cos2Y cos2Z + cos2X cos2Z =0
W, I-W,, 110 2 n Pm3n — 2[cos X cosY + cos Y cosZ + cos X cos Z) Pm3n
200 4 n — 2[cos2X + cos2Y + cos2Z2]
210 1 0 + [cos2X cos Y + cos2Y cosZ + cos X cos 2Z]
— [cos X cos2Y + cos Y cos2Z + cos2X cosZ] = 0
Table 2. Relative amplitudes f(xyz) of the Fourier series.
Surface Point configuration and Wyckoff position
name
I, 16a 000 Y**16b 3§33 V* 24c {0} S* 24d 30} -
Y f=0 (flat point) f= %3 (point config.) f=+283 f=0 (saddle) -
. ) line segments
=Y** f= +3 (point config. f= -3 T SCgMOMs f=-3 f=+1 -
2 (P‘: g.) along 4, v, I -y
.- _ ine _ _ - _ . : _
C(l~=Y*") f=4 along Xk f=+43 f=+1 f= -3 (point config.)
12a 000 J*6b 033 We6c 303 Weéd 130 P,8 11}
_ . ] _ line o - _ line segments _
W, I-W,, f= —6 (point config.) f=-2 along X0} f=-2 f=+2 along L, 7, 3 +y f=+3

Now one can request the topology of space partitioners
which are suitable for organizing rod packings. The impor-
tance of the threefold and fourfold rod packing to chemical
structures was indicated and discussed in detail by
O’Keeffe and Andersson® and by Hyde and Andersson."
The threefold rod packing corresponds to the symmetry
group Pm3n, which is the symmetry of important materials
like the so-called A15 superconductors (Nb;Sn etc.). The
fourfold rod packing has Ia3d symmetry, and correspond-
ing compounds are also important materials (e.g. garnet).

From the black—white symmetry of the space divided by
PNSs, one can see that only such solutions of the problem
are possible where all rods are in the same labyrinth! The
appropriate symmetry of the cubic fourfold rod packing is
Ia3d, and here the four groups of non-intersecting rods
correspond to the four groups of non-intersecting three-
fold axis. The graph which describes this type of line config-
uration is defined by the infinite number of points 32¢ xxx
with —0 <x< +o. The enveloping surface of this line
configuration (which represents the central lines of all rods)
must have open channels along xxx. This is in contrast to
the L-Y** surface, which closes these channels at the

points Y}y with x =1/16. Our idea was that the missing
surface may be a complementary one to I-Y**. This is
true: one only needs to change one of the phase angles
from 0 to & to calculate the PNS (Table 1). The surface
C(I,-Y**) is shown in Fig. 1, and it is seen how beautifully
this surface envelopes the rod packing. Calculating the
amplitudes of the Fourier series according to Table 1, one
can show that indeed a continuous “charge distribution”
extends along the Y} line graph forming one labyrinth
(Table 2). The second labyrinth is characterized by the
point configuration S$*(24d).

The names I,-Y** and C(I,-Y**) were taken to indicate
the former point configurations, as well as to show that
there exists a type of complementarity (Table 2). Now, with
the knowledge of the existence of quasi-continuous line
configurations and line segment configurations in the laby-
rinths, a better description may be given by L-Y}* and
S*-Yrx

The cubic three-fold rod packing belongs to the space
group Pm3n. We first found” a sufficient surface via a
POPS, generated by the point charges (+1) at position
J*(6b) and (—1) at position W(6d) of the space group
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Pm3n. Proceeding as shown above, one can simulate this
POPS with high accuracy by a PNS calculated with |S(110)|
=2,a=m,|5(200)| =4, a =0 and |$(210)| = 1, o =  (gen-
erating symmetry Pm3n, Table 1). This surface is shown in
Fig. 1, and again the “charge distribution” in the two laby-
rinths corresponds to nearly continuous graphs (Table 2).
One labyrinth is indeed spanned around the line config-
uration W(x0%) centred at the point configuration W(6c).
This part perfectly envelops the rod packing. The second
labyrinth is also organized by a nearly continuous “charge
distribution” which substitutes the original “point charges”.
It is a line segment graph which is exactly the well-known
(8.%)a net described by Wells.'* The line segments connect
the positions 6d(} 3 0) and 8e(} % }) following the twofold
axis 24j(%,y, y+3%) between y = } and y =1 etc. This line
segment configuration may be described (Fig. 1) by
W, y, y + 3)3214. With respect to all maximal amplitudes
(Table 2), the surface will be named W,I-W,,.

The interpenetrating parts of the rod packings have no
intersections, and therefore they were not included in the
general systematics of three-dimensional nets.'* However,
it is seen from our discussion that the rod packings can be
understood as special cases of three-dimensional nets,
where the missing “intersections” are substituted by the
symmetry-governed organisation of the whole pattern. We
have no doubt that the periodic nodal surfaces, PNS,* will
contribute to a better understanding of the organisation in
crystalline matter by revealing more about the fundamental
pattern hidden in graphs of general shape.

The calculations were made on a GX4000/SUN 4 graphic
work station.
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