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This essay attempts to analyse the later work of Anderson. It is argued that his
seminal ideas on the role of hyperbolic geometries and of minimal surfaces in
chemistry are in line with and a logical development in the tradition of Faraday and

Maxwell.

Dedicated to Professor Sten Andersson on the occasion of his 60th birthday.

It must surely be the least read of books — A Treatise
on Statics by George M. Minchin, Professor of Applied
Mathematics at the Royal Indian Engineering College,
Cooper’s Hill.! Not at all a bad book that taught
generations of scientific engineers in India. It began with
(Article 1): Definition of Force. Force is an action exerted
upon a body in order to change its state of rest or of moving
uniformly forward in a straight line. This is the definition of
force given by Newton (Principia, Book 1, Definition IV).
Students beginning physics had to take that definition as
dogma, for the authority of Newton was hardly to be ques-
tioned. Then again, in Article 3 the good George gives a
further definition of matter: Matter is something which
exists in space and attests its presence by such observed
qualities as extension, resistance and impenetrability. And
by way of explanation follows the further remark: A
limited portion of matter is called a body, and the quantity
of matter contained in a body is called its mass. A very
small particle of matter is called a particle.

These definitions, the beginnings of our attempts to ex-
tract some sense from the physical world, are tautological.
For in such an axiomatic scheme, what on earth is space?
Presumably that which is not occupied by matter. At the
level of atoms the axioms are absurd. In a molecule where
does one atom begin and another end? Langmuir con-
sidered water to be a giant molecule. And so it is. In our
own times quantum mechanics and relativity represent
higher tautologies that attempt to come to grips with these
issues. Newton, preoccupied with himself and intent on
celebrating the Creator through revealed (scientific) truth,
was himself unhappy with his definitions. Indeed in a letter
to his friend Bentley, he went so far as to say concerning
the idea of action-at-a-distance attributed to his formulae
that the notion represented “so great an absurdity that any
man who had in philosophical matters any wit whatever
could hardly fall into it”.

Any attempt to understand the art of Andersson begins
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with these things. Dissatisfaction with definitions drove
Andersson to the chemistry of his time where the deeper
questions could be put to one side. Even though chemists
began to accept quantum mechanics which appeared to
‘explain’ the idea of a chemical bond, one could still in
main agree with Comte, who in 1830 said that “Every
attempt to employ mathematical methods in the study of
chemical questions must be considered profoundly irratio-
nal and contrary to the spirit of chemistry. If mathematical
analysis should ever hold its proper place in chemistry, an
abberation that is happily almost impossible, it would occa-
sion a rapid and widespread degeneration of that science”.

Or with Kant, who of the chemistry of his day declared
that it was a science but not Science — “eine Wissenschaft
aber nicht Wissenschaft”, for the criteria of true science lay
in its relation to mathematics.

It is the search, bordering on obsession with the mathe-
matics of minimal surfaces, with the role of curvature, that
characterises Andersson’s later work. D’ Arcy Thompson in
his famous book on Growth and Form inspired some of it.

We can come closer to motivation if we consider one of
the first papers of J. Clerk Maxwell, called on “Faraday’s
Lines of Force™, given to the Cambridge Philosophical
Society on December 11, 1855. As W. D. Niven, the editor
of Maxwell’s scientific papers says: Maxwell had previously
been attracted by Faraday’s method of expressing electrical
laws, and he set himself the task of showing that the ideas
which had guided Faraday’s researchers were not inconsis-
tent with the mathematicans’ formulae into which Poisson
and others had cast the laws of electricity. His object, he
says, is to find a physical analogy which shall help the mind
to grasp the results of previous investigations “without
being committed to any theory founded in the physical
sciences from which that conception is borrowed, so that it
is neither drawn aside from the subject in the pursuit of
analytical subtleties nor carried beyond the truth by a
favourite hypothesis”.
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The laws of electricity are compared with the properties
of an incompressible fluid the motion of which is retarded
by a force proportional to velocity, and the fluid is sup-
posed to have no inertia. He shows the analogy which the
lines of flow of such a fluid will have with the lines of force,
to deduce not merely the laws of static electricity in a single
medium, but also a method of representing what takes
place when the action passes from one dielectric into
another. In the latter part of the paper, he proceeds to
consider the phenomena of electromagnetism, and shows
how the laws discovered by Ampere lead to conclusions
identical with those of Faraday. In this paper three expres-
sions are introduced which he identifies with the compo-
nents of Faraday’s electronic state, though the author ad-
mits that he has not been able to frame a physical theory
which would give a clear mental picture of the various
connections expressed by the equations. In a later paper,
on “Physical Lines of Force” he explained that having
found the geometrical significance of the electronic state,
he now proposed to examine magnetic phenomena from a
mechanical point of view. The rest is history.

The search for the role of geometry, of minimal surfaces
and of gaussian curvature had for Andersson something
like the same roots or conviction that drove Maxwell. Ex-
cept that no Faraday preceded him, so that the heresy was
considered extravagant madness by the orthodox.

If dissatisfaction with the physicists’ ideas of force and
energy led him to flee to chemistry, it was natural that
acceptance of reality led to a long and distinguished ap-
prenticeship in the orthodox church of inorganic chemistry.
Crystallography at least avoided these issues. Atoms were
fixed in space, and atoms could be treated as hard spheres,
and chemical bonds existed. However vague that notion,
spanning electrostatic to covalent bonding and derived
from quantum-mechanical perturbation theory applied to a
universe of two atoms, one kept the faith, and point-group
crystal symmetry was all. The Andersson heresy began to
take form with his work on zeolites, where the network of
bonds appeared to lie on real minimal surfaces. The obses-
sion resurfaced. Why on earth minimal surfaces? If quan-
tum mechanics works, and it does describe spectra cor-
rectly, it loses something in so doing. The cruder Born-
Oppenheimer approximation fixes nuclei in space and ap-
plies perturbation theory about those points. It does not do
so well, but it does build in shape. We know that isomerism
is critical in biology. There also emerged dissatisfaction
with the definition of phase, e.g. in non-stochiometric
Ti,O,, usually described as a mixture of stochiometric
phases. But the full apparatus of solid-state crystallo-
graphy, the language of dislocations, defects and grain
boundaries, is not always adequate.

As developed by S. T. Hyde and Andersson (cf. other
papers in this volume) the postulated isometric Bonnet
transformation described certain transformations in liquid
crystals, as well as the important Martensite transformation
in steel. Fast-ion conductors became sensible when viewed
from the point of view of minimal surfaces. A better de-
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scription of things emerged following the parallel work of
Von Schnering and Nesper, and colleagues on the same
kinds of lines. The lengths of bonds and their curvature do
change and are not immutable. Gaussian curvature and
long-known obscure theorems in differential geometry
loomed large. There was a resurgence of interest on the
part of mathematicians in minimal surfaces.

If we like, these primitive ideas were at the level of Fara-
day’s work, perhaps no less important. From a philosophic
viewpoint, crystallography, concerned with the arrange-
ment of points in space and the symmetries derivable there-
fore, comes closest to the thoughts of the Greeks, at least
to the Pythagorean belief in the magic of numbers. Music,
astronomy, arithmetic and geometry were the original pri-
meval sciences. Even up to the Baroque period the building
into composition of the Golden section was almost a man-
datory requirement for proper harmony. It can be reason-
ably surmised that Andersson’s well known aversion to
music derives from that fact. After the Renaissance the
requirement was dropped. Ergo a lack of proper harmony!

It is a modern conceit that the search for final causes, a
revealed truth embodied in a few mathematical laws
(preferably number-theoretic), should have been aban-
doned following the proof of Godel’s theorem. (In essence,
that given any set of axioms and a logic to manipulate
them, there are within the logic undecidable propositions.)
But the search for final causes still underlies science, and it
is indisputable that mathematics, a construct of the mind,
has been incredibly effective. The marriage between arith-
metric and geometry, the bridging of discrete and con-
tinuum still represents the most profound and enduring
task of philosophy. It is that task that Andersson con-
fronted. What is missing from crystallography is the con-
nection from geometry to force. In the Euclidean desert of
physics, forces act (in textbooks) between points, spheres,
cylinders and planes. However successful quantum
mechanics was numerically, somehow physics appeared to
reduce the world to too sterile order, and, as the Born—
Oppenheimer approximation shows, misses something.
Nowhere in the scheme of things was the notion of shape.
And, after all, the recognition and cognition of shape and
form are the two earliest tasks presented to the human
brain.

Shape and form imply the concept of a surface, the
abstraction of discreteness and separateness which is at the
core of things. The abstraction has it that an atom can be
defined independently of its surroundings, even space.

In most of science that deals with molecular forces,
atoms are treated as if point particles and size and shape
are invoked as separate concepts. For example, the van der
Waals dispersion energy of interaction of two atoms (pro-
portional to 1/r®) becomes infinite on contact unless some
preassigned hard-core contact size is involved. This con-
vention is universal, and its origins lie deep. In fact no
distinction can be made between energy, size and shape,
which are inextricably linked. The linking concept of self-
energy takes on significance whenever an object is con-



sidered to have a finite extent, or is delocalised. For then
our abstraction that the object can be considered separately
from its surroundings becomes philosophically tenuous, as
one part of the object can consider its other parts to belong
to the rest of the world. Hence the uncertainty principle.
No difficulty occurs if the environment or object is
immutable. If the opposite obtains, as indeed it always does
at some level, the reaction of the (changed) environment to
the object will be different, and the self-energy due to this
reaction field will be different. The shift in self-energy
due to radiation corrections to energy levels is a central
problem of quantum electrodynamics. The Born electro-
static self-energy of an ion is important in electrolyte
theory, physical adsorption and in the migration of ions
through membranes. The concept is clear, but the details
are complicated. We remark only that for a molecule of
finite extent its dispersion self-energy (defined as the
change in its energy due to its coupling with the electro-
magnetic field, or equivalently, as the change in quantum-
mechanical zero-point energy of the field due to its
coupling with the oscillating dipole moment it induces in
the molecule) is the same as the binding energy (for a
hydrogen atom) but of opposite sign.

The same ideas and formalism permit extension to two or
more atoms: The interaction energy, the difference be-
tween the complete energy of the coupled system and the
sum of the dispersion self-energies of two isolated atoms,
reduces to the van der Waals energy at large distance, but
now remains finite at zero separation. For like atoms this
energy is the same as the binding energy of the molecule
that would be formed by them. Again the same concepts,
i.e. the recognition that an atom and its surroundings can-
not be distinguished, can be used to develop a semi-
classical estimate of the Lamb shift in hydrogen. More
importantly, we can use the same formulae to explain the
differences in binding energy (face-centred cubic versus
hexagonal close-packed) of rare-gas crystals. This is not
accessible by a description based on the idealisation of an
atom represented by a hard or even soft core with two- or
three-body interaction potentials. These ideas and formal-
ism to deal with them were developed by Mahanty and the
author and summarised in Ref. 2. The observation is im-
portant. The entire electromagnetic reaction field must be
taken into account to explain these energies. The resolu-
tion of this long-standing problem provides an immediate
clue: Global (many-body forces) and local properties are
linked, and global structure is necessary.

With that in mind, let us now step back further to see
what motivated the concept of minimal surfaces. Consider
with Nesper and Von Schnering an array of electrostatic
point changes arranged in different crystallographic sym-
metries of, say, NaCl, CsCl etc. We suppose that the partic-
ular space-group symmetry is set by packing, i.e. for the
moment admit the approximation of a hard-sphere model
for the ions to set the lattice parameters. The Ewald sum of
electrostatic energies provides the major contribution to
the binding energy. Now consider surfaces of zero electro-
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static potential traced out inside the lattice. These can be
calculated, and look very much like minimal surfaces. The
idea here is that ionic or electronic motion proceeds along
the tangential fields of these minimal surfaces. If the crystal
zero potentials are truly minimal surfaces, then phase
changes can occur easily via the Bonnet transformation.
Excited states of the crystal, including anharmonic states,
are then included and counted as the (infinity) of different
allowed minimal surfaces supposed to form a complete set.

But these surfaces are not minimal, although appearing
close to such. The reasons seem clear enough: No electro-
static set of charges can be in an equilibrium state. Presum-
ably if one built in quantum-mechanical zero-point energies
and then calculated the new equipotential surfaces, the new
zero potential surfaces would be minimal surfaces of the
field.

With that idea, we can turn the argument around and say
that since the crystal exists as an equilibrium system, it
must be permeated by surfaces of zero stress of the entire
electromagnetic field. Imposition of this (mechanical) re-
quirement, together with the condition that the Poynting
vector (E X H) (momentum transport) is zero, presumably
will give back quantum mechanics. The argument implies
the emergence of quantum mechanics as a consequence of
minimal surfaces, a necessary Pythagorean imperative that
effects the bridge between geometry and arithmetic, dis-
crete and continuum, the particle and field points of view.

There is much more to say on the impact of Andersson’s
thinking which paralleled that of his colleague Larsson on
cubic phases, and others on chaotic bicontinuous phases
now seen to be ubiquitous in membrane biology and
protein chemistry. The shift in thought from a Euclidean
desert to a world of hyperbolic geometries, with its linkage
of global and local properties, has spurred what is coming
to be known as Nouvelle Physique. It will have no less
profound an impact, perhaps more, than Hawking’s
synthesis in astronomy.

Beyond that we can note the recent developments of
Andersson on quasi-crystals, geometric in origin, but moti-
vated again by the drive toward that same bridge between
arithmetric (number) and geometry. Advances in number
theory, now coming back into fashion with the publishing
of Ramanujan’s notebooks, can be expected to lead to new
insights. New number-theoretic formulae will be found that
elucidate packings of spheres. These are related to theta
functions and their transformations, equivalent to Fourier’s
theorem through the more fundamental Riemann relation
between {(s) and L(1—s), but different. Perhaps these new
results bear on the whole question of the wave—particle
duality and on quasi-crystal symmetry, e.g. eqns. (1) and (2),

Dn[1xexp (=jx+y)]= 2 [w(n)] In [1 £ exp (=nx+y)]
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where u(m) is the Mobius function [u(m) = (-1) if mis a
product of r distinct primes, zero otherwise], and the coeffi-
cient of x" in eqn. (2) is o(N), the sum of the divisors of N.
Another we can derive is eqn. (3). This final equation is

S Jwn) [ 2im\ 1
oS 51(2) ] o

n=1 n=1 j=-n

surprising. The structure defined by the convoluted Mobius
function is geometrically random (although algebraically
well determined). Yet the diffraction pattern of such the
structure consists purely of Bragg peaks. This Fourier
transform is a sum of delta functions that requires two
indices, not one, unlike the fundamental formula of
analysis and crystallography, eqn. (4). It is worth noting

Dcosny = > & <J‘Xl: —2m> (4)

n=1 m=-n

that such functions and new theta-function analogues also
satisfy Possion’s equation with delta-function sources.
The above paragraphs are an attempt to extract some of
the essence of Andersson’s thought, which has played, and
will continue to play, a key role in what will come to be
seen as a great watershed in science. It is a development of
which D’Arcy Thompson, who made such eloquent plea
that forces should be linked to form, would have liked. It is
the beginning of a language of shape that we suspect
Pythagoras, Faraday, Maxwell and Leibniz certainly, and
maybe even Newton, would have thoroughly approved.

Appendix

To make a connection between such apparently obscure
new formulae in number theory, note that Euler’s and
similar products, the theta functions, elliptic modular func-
tions and Ramanujan’s function t©(rn), formulae like the
Rogers—Ramanujan identities, are intimately related in
ways not yet clear to packings of spheres. Some hints at
these things can be gleamed from Ref. 3, now long out of
print, and in Ref. 4.

The theta functions are fundamental. If we take the
conventional definitions, with ¢ = e™, we have eqns.
(A1) and (A2). Their limiting forms as T—0 are periodic

8(z,.q) = > (—1)q7e"™, 85(2,9) = 9,z +3m,9)

n=-x
S

=1+2 Z q"2 cos 2nz (A1)

n=1

9,(2,q) = 0,(z + 1/2,q) =2, ¢’ cos [(2n+1)z] (A2)

n=0
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delta functions. Thus we have eqns. (A3)-(A6).

x

9,(2nz,1) = 2 >, cos [(2n+1)2nz]

n=0

= 2 [8(z=m) ~ $8(z=mb,)] (A3)

m=0)

2> (=)' sin [(2n+1)2nz)

9,(2nz.1) = 2
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%,(2nz,1) = mzzx_xew“-‘ =1 _2: 8z — mly) (A5)
9,(2nz2.1) = gi 8[z — (mly — 11,)] (A6)
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These periodic delta functions are the basic source
functions for any electrostatic array of charges with the
standard crystallographic symmetries. They satisfy the
fundamental differential equation (A7), where y is any of

widy Jy
——=+==0 A7
4322 &t (A7)

the four theta functions. The electrostatic potential associ-
ated with any standard lattice, the Ewald sums, can be
written as an integral over products of the four theta func-
tions in appropriate combinations to allow overall charge
neutrality. Thus for the CsCl structure, which mimics the
infinitely periodic P minimal surface, the electrostatic
potential V is given by the proportionality (A8), where now

V(x,y,2) OCJ t dr (9;9;9; — 9,8,9,) (A8)
0

the arguments of the theta functions are mx, my and nz, and
g=exp (—£). Similarly for the NaCl structure we have
eqn.(A9), for which, e.g. fromeqn. (A7), we geteqn. (A10),

16[~
Vix,y,z) = - [ t dt 9,(2nx,q)9,(2my,q)%,(2nz,q) (A9)
0

VXV = -32x9,(2nx,1) 8, (2ny,1) 9, (2nz,1)

= { 2 dx—m) - %5(x—m/z)} iz} (A10)

m=—c




which reduces to the charge distribution required. Again a
structure of charges with diamond symmetry has the poten-
tial of eqn. (A11), with arguments 2mx, exp (—#), and so

S

V(x,y,2) = 16 j ¢ dt (8,9,9, + 9,9,9)

0

(A11)

on for the IWP, Gyroid and other symmetries.

Potentials for all other Bravais lattices can be written by
varying the lattice spacing in the x, y and z directions.
These are exhaustive.

As already discussed, the infinitely periodic zero-
potential surfaces so generated are not minimal surfaces,
but close to such surfaces.” The mean curvature H has the
simple form H = —V - E/2, where E is the unit electric field
vector, and the gaussian curvature is a more complicated
function related to the stress tensor of the field.

One presumes that the full time-dependent electro-
magnetic field equations for electrostatic and vector poten-
tials coupled by the gauge condition will also have similar
expressions.

A fascinating conjecture of Hyde has it that, because of
the conditional convergence of the potential sums, re-
arrangement of the sums may lead to an infinite set of
topologies associated with any given array. This conjecture
is open.

The Jacobi theta function transformation is equivalent to
the fundamental Riemann relation, eqn. (A12), where I'(s)
2'75T(s)E(s) cos ismt = ¢ (1—s) (A12)
is the gamma function and g(s) is given by eqn. (A13). It is
connected to the prime-number theorem through the

Riemann conjecture that the only non-trivial zeroes of (s)
lie on the line Re (s) = 1.

«©

1
W) =, ;,Re(s)>l

(A13)

A limiting case of the Jacobi transformation is the funda-
mental formulae of crystallography, e.g. eqn. (Al14). The

S

Z eZnniz = 2 6(z—m)

n=—w m=—x

(A14)

infinite product forms of the theta functions, e.g.
eqn. (A15), suggest that one may be able to construct a

9(z,q9) =[] (1 =g [T (1 +2¢"" cos 2z +¢*"7%) (Al5)

n=1 n=1

wider class of basis functions than those which underly
present crystallography, to include, say, quasicrystals. This
must be possible, as disordered systems exist. Details will
emerge in later publications.
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For the moment notice that eqn. (3) of the main text
is one such. Another suggestive result is eqn. (Al6),

0(z,q) = [T (1= lnn)le>™)

jim=1
X (1+]u(n)e 2 ete)(1+ |u(n)e > 'e'e ™) (A16)

where u(n) is the Mdobius function. Properties of prime
numbers loom large in any such new formulae. A trivial
example is this extension of Euler’s product [eqn. (A17)],

=[] wnlia-em) = 2 In [1 - [u(n)le™]

n=1
1(rp) /21 =, lu(m)|
) 7 (2) (277

where the contour ¢ in the complex p-plane of the inverse
Mellin transform is sited to allow interchange of orders of
integration and summation.

(A17)

Carrying out the sum one has eqn. (Al18), since
eqn. (A19) holds. Then since also eqn. (A20) holds, one
has eqn. (A21); replacing y by j%y and summing over j one
has eqn. (A22), whence eqn. (2) of the main text follows by
differentiation.

RN PN AR
2= TO L@p)y’ (A18)
 lu(m)  Tp)
27w " tep) e
wm) 1
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D) &
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2=~2u(n>f I'(p)
n=1

> In(1-|um)e™”) =[] (1-e™) (A22)

jm=1

These considerations, some firm, some conjecture, are in
the spirit of Andersson’s work itself.

One thing alone is certain. Andersson’s influence, draw-
ing on an interaction based on rock-solid long-term careful
experiment mixed with a breathtaking capacity to
speculate, has opened up an extraordinary new field.

There appears much to do.

779



NINHAM

References

1.

[

Minchin, G. M. A Treatise on Statistics, Clarendon Press. Ox-
ford 1879.

. Mahanty. J. and Ninham, B. W. Dispersion Forces, Academic

Press. New York 1976.

. Hardy, G. N. Ramanujan, Cambridge University Press, Cam-

bridge 1940.

780

4. Dyson, F. J. In: Bais, 1., Chodos, A. and Tze, C.-H., eds.,

Svmmetries in Particle Physics, Plenum Press. New York 1984.

5. Barnes, I. S.. Hyde, S. T. and Ninham, B. W. J. Phys. (Paris)

Colloque de Physique 51, Colloque C7, Suppl. 23 (1990) C7-19.

Received November 28, 1990.



