Synthesis and Magnetic Properties of a \(\mu\)-Oxo-di(\(\mu\)-acetato)-manganese(III) Complex of a Strapped Tripodal Pyridylamine Ligand \(N,N',N',N'\)-Tetrakis(2-pyridylmethy1)-1,3-propanediamine. A Model for the Mn\(_{2}\) Site of Mn-Catalase Enzymes

Hans Toftlund, a, * Andrew Markiewicz b and Keith S. Murray b

aDepartment of Chemistry, Odense University, Campusvej 55, DK-5230 Odense M, Denmark and
bDepartment of Chemistry, Monash University, Clayton, Victoria 3168, Australia

A \(\mu\)-oxo-di(\(\mu\)-acetato)-bridged manganese(III) complex \([\text{Mn}_2\text{O}((\text{CH}_3\text{CO}_2)_2\text{tptn}]\) ((ClO\(_4\))\(_2\)) \cdot \text{CH}_3\text{CN} (1) has been synthesized from reaction of basic Mn\(^{II}\) acetate and the ‘strapped’ tripodal ligand \(N,N',N',N'\)-tetrakis(2-pyridylmethyl)-1,3-propanediamine, tptn. The magnetic and electronic spectral data of 1 are generally similar to those of structurally characterized triazaacylenonane and tris-(1-pyrazolyl)borate analogues and to those of manganese-catalase enzymes indicating a common core metallostructure in all cases. Variable-temperature magnetic data on 1 are indicative of ferromagnetic coupling between Mn\(^{II}\) ions (\(\beta = +1\) cm\(^{-1}\)), a phenomenon recently observed in other related polynuclear Mn\(^{II}\) species.

There is intense activity in a number of laboratories in trying to synthesize good model compounds of manganese in order to mimic aspects of the active sites of the photosynthetic water oxidation centre (WOC in Photosystem II) and of certain Mn-enzymes.\(^1\)\(^4\) While the metal-site structures of these biomolecules are still not particularly well understood, it is thought that the catalases (e.g. \(Lactobacillus plantarum\)) probably contain \(\mu\)-oxo-di(\(\mu\)-carboxylato)Mn, dinuclear moieties and the WOC probably contains dinuclear or tetranuclear oxo/hydroxo bridged species bonded to the protein via N- or O-donor groups.\(^5\) ESR-active states of both classes of protein, which give rise to multilinear signals, are generally thought to involve mixed-valence Mn\(^{III/IV}\) or Mn\(^{II/III}\) neighbours. Changes in magnetic susceptibility between the WOC oxidation states have recently been reported and related to existing model systems.\(^7\)

Our own approaches to modelling \(\mu\)-oxo/hydroxo polynuclear manganese species involve the use of a number of types of dinucileating ligands. In the present study we report the use of a strapped tripodal pyridylamine ligand, tptn, (shown) which we have previously used to obtain a good model for the iron protein, hemerythrin.\(^8\)

This ligand forms an Mn\(^{III}\) compound of formula \([\text{Mn}_2\text{O}((\text{CH}_3\text{CO}_2)_2\text{tptn}]\) ((ClO\(_4\))\(_2\)) \cdot \text{CH}_3\text{CN} (1), the spectral and magnetic properties of which, described here, are similar to those displayed by the Mn-catalase enzymes referred to above.

Experimental

The ligand tptn was synthesised using a literature method.\(^9\) Magnetic and spectral measurements were made using equipment described previously.\(^10\) An applied field of 10 kOe was used for the susceptibility measurements and neat, powdered samples of 1 were employed.

**Synthesis of \([\text{Mn}_2\text{O}((\text{CH}_3\text{CO}_2)_2\text{tptn}]\) ((ClO\(_4\))\(_2\)) \cdot \text{CH}_3\text{CN} (1), N,N',N',N'\)-Tetrakis(2-pyridylmethyl)-1,3-propanediamine (tptn) (660 mg, 1.5 mmol) and sodium perchlorate (500 mg) were dissolved in acetonitrile (40 ml). The solution was heated to 45 °C and basic manganese(III) acetate (530 mg, 1.0 mmol) was added with stirring. The mixture was filtered after 15 min and the filtrate was transferred to a glass cylinder. A layer of hexane (30 ml) was carefully placed on top of the brown solution. The glass was closed tightly and the mixture was left undisturbed at room temperature for 10 days. During this time large red–brown crystals were precipitated. They were removed by filtration and washed with a 1:1 mixture of tetrahydrofuran and hexane. Yield 0.27 g (19.5%). Anal. \(C_{18}H_{18}ClMn_2N_8O_{19}\): C, H, N. These crystals rapidly lost CH\(_3\)CN in air. More stable crystals were obtained on recrystallisation from H\(_2\)O–CH\(_3\)CN, and these were employed in X-ray crystallographic attempts.
Results and discussion

Complex I was obtained in the form of large red-brown crystals by reacting manganese(III) acetate, tptn and sodium perchlorate together in acetonitrile as solvent. Water-containing solutions can not be used for synthesis, since disproportionation of the Mn(III)⋯Mn(III) species occurs. Once formed, the complex can be recrystallised from aqueous MeCN solutions. Crystals obtained this way unfortunately do not diffract X-rays well because of their layered habit. Changing the anion from ClO₄⁻ to PF₆⁻ did not improve matters. The stoichiometry, oxidation state and core structure (μ-oxo-di-μ-acetato) of I is undoubtedly correct as judged by analytical data, and by the close agreement of IR and electronic spectral data of I with those of a related triazacyclononane compound (2) recently reported by Wieghardt et al.¹ and with some of the structurally characterised complex [Fe₃O(CH₃COO)₂₂tpbn]₃[ClO₄]₄. Since a powder diffractogram of I is not the same as that of the Fe(III)-tptn analogue and since the magnetic data (vide infra) can be fitted extremely well to a dinuclear model, it is possible that the molecular structure of I is dinuclear as in (A) rather than tetranuclear as was initially anticipated; viz. (B). However, while it is known from related work,¹¹,¹² dealing with ‘strapped’ complexes of Cu₃(OH)₂ cores that a trimethylene group is capable of spanning a Cu–Cu distance of 3.07 Å, and it is known that the Mn⋯Mn distances in three reported Mn(μ-O)(μ-CH₃COO)₂Mn cores lie in the range 3.08–3.15 Å,¹²,¹³ the adoption of structure A is not very likely in view of the steric strain which would occur if the (CH₃)₂ strap and the μ-oxo O atom were in the same plane.*

The magnetic and electronic spectral data on I are given in Table 1 and compared with those of the recently reported triazacyclononane¹ and hydrotrotis-(1-pyrazolyl)borate¹ analogues 2 and 3. The visible spectra of all three compounds are similar to each other and to those reported for the manganese catalase of Lactobacillus plantarum¹⁴ and for a ribonucleotide reductase of Brevibacterium ammoniagenes.¹⁵ indicating a probable common core metallostructure in all cases.

```
Table 1. Properties of complex 1 and of related μ-oxo-di-μ-acetatomanganese(III) complexes.

<table>
<thead>
<tr>
<th>Complex</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV–VIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH₃CN)</td>
<td>202(1.9 x 10⁴)</td>
<td>232(3.4 x 10⁴)</td>
<td></td>
</tr>
<tr>
<td>20 °C, λmax/ nm</td>
<td>257(1.0 x 10⁴)</td>
<td>260(3.8 x 10⁴)</td>
<td>283(1.2 x 10⁴)</td>
</tr>
<tr>
<td>(ε per Mn₃)</td>
<td>370sh(1.2 x 10⁴)</td>
<td>358sh(910)</td>
<td>458sh(330)</td>
</tr>
<tr>
<td>Dm²mol⁻¹cm⁻¹</td>
<td>494(191)</td>
<td>495(324)</td>
<td>486(420)</td>
</tr>
<tr>
<td>531(100)</td>
<td>520(250)</td>
<td>524sh(350)</td>
<td></td>
</tr>
<tr>
<td>550sh(73)</td>
<td>545sh</td>
<td>540sh(330)</td>
<td></td>
</tr>
<tr>
<td>572sh(50)</td>
<td>570sh</td>
<td>582sh(190)</td>
<td></td>
</tr>
<tr>
<td>680(10)</td>
<td>665(95)</td>
<td>760(116)</td>
<td></td>
</tr>
<tr>
<td>820(20)</td>
<td>910(40)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetism | ferromagnetic | ferromagnetic | weakly anti-ferromagnetic |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>g = 1.95</td>
<td>g = 2.0</td>
<td>J = 9 cm⁻¹</td>
</tr>
<tr>
<td>J = 11 cm⁻¹</td>
<td>J = 9 cm⁻¹</td>
<td>J = −0.2 to</td>
</tr>
<tr>
<td>D = 7 cm⁻¹</td>
<td>D = 3 cm⁻¹</td>
<td>−0.7 cm⁻¹</td>
</tr>
</tbody>
</table>

*Complex 2 is [tacn]₃Mn₃(μ-O)(μ-CH₃COO)₂ClO₄, where tacn = 1,4,7-triazacyclononane. Complex 3 is [H(dpz)₃]₃Mn₃(μ-O)(μ-CH₃COO)₂] where HB(dpz)₂ is hydrotrotis-(1-pyrazolyl)borate. The magnetic data are actually for the trimethyl-N-substituted tacn complex (Ref. 1). The D term allows for single-ion zero-field splitting.
```

The temperature variation of the magnetic moment, per manganese atom, is shown in Fig. 1. µMn increases from 5.22 B.M. towards a plateau value of −6.05 B.M. as the temperature decreases from 300 to 30 K. It then decreases rapidly to a value of 5.07 B.M. at 4.3 K. The 300–30 K region is typical of the behaviour expected for ferromagnet-

![Fig. 1. Temperature dependence of magnetic moment, per Mn atom of complex 1 using a 10 kOe applied field. The calculated line uses the g, J and D values given in Table 1. See text for comments on other fitting attempts.](image-url)
ically coupled Mn$^{II}\text{-}Mn^{III}$ ($S=2/S=2$) pairs in which the ground state is a $S'=4$ spin state. The rapid decrease in μ_{max} at very low temperatures is similar to that observed in various ferromagnetically coupled NiII and CuII compounds and is due to single-ion zero-field splitting effects and/or to weak intermolecular antiferromagnetic coupling, both of which give rather similar low-temperature behaviour. Inclusion of a $(T-\theta)$ term into the Van Vleck susceptibility expression for an $S=2$ dimer gave a very good fit using $J=10.2$ cm$^{-1}$ and $\theta=-2$ K, where the latter term allows for intermolecular antiferromagnetic effects. A similarly good fit, shown in Fig. 1, is obtained using the thermodynamic expression for susceptibility together with a matrix diagonalization approach employing a spin Hamiltonian containing exchange ($-2S_1S_2$) and axial zero-field splitting terms ($D_J=D_{z}=D$). The calculated line in Fig. 1 is for $g=1.95$, $J=11$ cm$^{-1}$ and $D=7$ cm$^{-1}$, the last parameter influencing the low-temperature decrease in μ_{max}. Interestingly, it is also possible to fit this low-temperature region using $D=-3$ cm$^{-1}$. More precise refinement of the parameters would require variable field magnetization and single-crystal anisotropy measurements at low temperatures.

Wieghardt et al. have recently reported virtually identical magnetic behaviour for an N-methyl-substituted triazacyclononane complex of 2, the only differences being a slightly higher μ_{max} value (6.16 B.M. at 26 K) and μ_{max} value (ca. 5.9 B.M.) obtained in a 1 kOe applied field. These workers also employed a spin Hamiltonian approach containing J and D terms and obtained a value of J very similar to that for 1. It is therefore likely that the core geometries in 1 and 2, and perhaps the capping ligand geometries, are similar. Surprisingly, complex 3, which contains the HB(pz)$_2$ capping ligand, shows very weak antiferromagnetic behaviour, and this difference compared to 1 and 2 might be related to subtle differences observed in the core geometry. Similar arguments apply to $[\text{Mn}_2\text{O(OAc)}_4\text{bipy}(\text{H}_2\text{O})_2]$ (PF$_6$)$_2$, for which $J=-3.4$ cm$^{-1}$, and $[\text{Mn}_2\text{O(OAc)}_4\text{bipy}(\text{N}_3)_2]$, for which $J=3.4$ cm$^{-1}$. Intramolecular ferromagnetic coupling between MnII neighbours bridged by oxo and carbonylato groups has also recently been observed in other polynuclear/mixed-valence Mn complexes such as $[\text{Mn}_2\text{O}_2\text{Cl}_2\text{OAc})_4\text{(pz)}_2] (J=12.1$ cm$^{-1})$ and $[\text{Mn}_2\text{O}_2\text{(O,CPh)}_2\text{(H}_2\text{O})_2]$. The Jahn–Teller distorted $t_{2g}^6e_g^1$ MnII configuration, and its associated arrangement of ‘magnetic’ orbitals would appear to be particularly prone to creating superexchange pathways and orbital overlap which lead to nett ferromagnetic coupling.

Finally, some observations on the EPR spectrum of 1 are briefly described. Dissolution in pure dry DMF and immediate freezing to 77 K yields a well resolved 16-line signal at high instrument gain. These lines are centred at $g=2.02$ with 5Mn-hyperfine splitting of ca. 80 G. The complete line-shape is similar to those reported for μ-dioxo MnII-MnIV dimers and for Mn-catalase.

It is generally assumed that even-spin MnIII monomers ($S=2$) or MnIII-MnIII dimers ($S'=4,3,2,1,0$) are EPR-silent, particularly in the $g\sim 2$ region, because of a combination of non-Kramers degeneracy, zero-field splitting and adverse relaxation rate effects. Conversely, the $S'=\frac{1}{2}$ ground-state systems in exchange-coupled MnII-MnIV models and in the $S=\frac{1}{2}$ oxidation level of Photosystem II would be expected to yield a multilinear $g=2$ signal, as would the uneven-spin ($S'=\frac{1}{2}$) sub-levels in some recently reported ferromagnetically coupled mixed-valence models. Even-spin pair level spectra have been detected, however, in FeIII-O-FeIII ($S'=2$ level) and MnIII-O-MnII ($S'=2$ and higher levels) systems.

Observations of multiline spectra of the present type for complexes containing the MnIIO(OAc)$_2$ core are controversial. Nishida et al. have reported similar observations for frozen DMF glasses of complexes related to 1, and of complex 2. They assign the lines to a superposition of 11-line hyperfine multiplets arising from the MnIII-MnIII pair levels $S'=2,3,4$. Wieghardt et al. however, claim that glasses of 2 are EPR-silent and that Nishida's observations are artefacts caused by the easy disproportionation of the MnIII-MnIII complex to the mixed-valence MnII-MnIV analogue.

At this point we favour Wieghardt’s interpretation, since it is possible, despite the care we took in handling the solutions of 1 used for EPR measurements, that a small quantity of the MnIIMnIV complex had formed on the surface of the crystals prior to dissolution, or that traces of oxygen and water may have been present in the DMF solvent. Nevertheless, further studies of the EPR spectra of mono- and binuclear MnIII complexes are generally warranted to eliminate these uncertainties, since complexes unrelated to 1 are reported to yield multiline signals.

Note added in proof: Recent X- and Q-band studies of even-spin ground-state Fe(II)-Fe(II) ($S'=4$) models display ESR lines at low field arising from transitions with non-Kramers doublets of the $S'=4$ manifold. Similar low-field signals have also just been reported for complex 3, in this case arising from the $S'=2$ levels.

Acknowledgements. This work was supported, in part, by grants (to K.S.M.) from the Australian Research Council and Monash University research funds. The authors thank Mrs J. Browne for help with the EPR measurements and Mr K. J. Berry for help with computer fitting.

References

30. Hendrich, M. Personal communication.

Received August 18, 1989.