Equilibrium and Structural Studies of Silicon(IV) and Aluminium(III) in Aqueous Solution. 24. A Potentiometric and 27Al NMR Study of Polynuclear Aluminium(III) Hydroxo Complexes with Lactic Acid

Eva Marklund* and Lars-Olof Öhman

Department of Inorganic Chemistry, University of Umeå, S-901 87 Umeå, Sweden

Equilibria between H^+, aluminium(III) and lactic acid [CH$_2$CH(OH)COOH, HL] were studied within the limits 0.95 \leq Z_α \leq 3.5, $-\log[H^+]$ \leq 5.5; 0.0003 \leq B \leq 0.010 M; 0.007 \leq C \leq 0.010 M and 1 \leq B/C \leq 5, where Z_α is the average number of OH$^-$ reacted per HL and B and C stand for the total concentrations of aluminium and lactic acid, respectively. The measurements were performed at 25°C in a constant ionic medium of 0.6 M NaCl. As the attainment of equilibria in this area was very slow, the measurements were performed as batch potentiometric (glass electrode) measurements combined with quantitative 27Al NMR measurements. In addition to the mononuclear aluminium–lactate complexes AlL^{2+}, AlL_2^{3+}, AlL_3 and $\text{Al(H}_2\text{L})_2$ dominating at Z_α \leq 0.95, all data could be explained with the complexes $\text{Al}_2\text{O}_4\text{(OH)}^{1+}$, $\text{Al}_3\text{O}_6\text{(H}_2\text{L)_3}$ and a species of high nuclearity which tentatively has been given the composition $\text{H}_{3}\text{Al}_2\text{(HL)}_4$. Equilibrium constants, defined according to the following reaction

$$\phi H^+ + q\text{Al}^{3+} + r\text{HL} \rightleftharpoons H_3\text{Al}_l(\text{HL})_r$$

are $log \beta_{3.2.1} = -6.86 \pm 0.044$, $log \beta_{6.2.2} = -16.79 \pm 0.055$ and $log \beta_{3.8.13.4} = -106.9 \pm 0.23$. The hydrolysis constant for $\text{Al}_2\text{O}_4\text{(OH)}^{2+}$ was determined from separate solutions aged for prolonged periods, giving the result $log \beta_{2.5.12.9} = -105.5 \pm 0.20$. Data were analysed with the least-squares computer program LÉTAPROPVRID. To demonstrate the complexing ability of lactate ions to Al$^{3+}$, the results of some model calculations are presented and discussed.

In part 14 of this series, I, equilibria in the three-component system $H^+–Al^{3+}–lactic acid$ (2-hydroxypropionic acid) were studied in the area 0 \leq Z_α \leq 0.95, where Z_α is the average number of OH$^-$ reacted per HL. These measurements were performed as potentiometric titrations at 25°C in 0.6 M NaCl medium. The titrations were characterized by rapid attainment of equilibria, and data could all be explained with the mononuclear species AlL^{2+}, AlL_2^{3+}, AlL_3 and $\text{Al(H}_2\text{L})_2$. It was also found that for $C\text{B} \leq 5$ and Z_α > 0.95, additional effects, caused by other soluble ternary species, appeared. As these reactions were characterized by very slow kinetics, with equilibration times of up to several months, the ordinary titration technique did, however, prove inadequate. The present investigation, which aims at interpreting the complexation in this area, is therefore based on data from batch solutions, equilibrated at 25°C in periods of up to 7 months. Since the present measurements are conducted in an area where the slow-forming hydrolytic species $\text{Al}_2\text{O}_4\text{(OH)}^{2+}$ can be expected to form, a redetermination of its formation constant under comparable conditions (i.e. equilibration times of several months) was also performed.

Experimental

Chemicals and analysis. All stock solutions used [NaCl, HCl, NaOH, D,L-CH$_2$CH(OH)COOH, AlCl$_3$] were prepared and analyzed as described earlier.

Apparatus. The automatic system for precise EMF measurements, the thermostat and the electrodes are fully described in Ref. 1. The calibration of the glass electrode was performed separately in solutions of known $[H^+]$ before and after each measurement: The turbidimetric measurements were performed using a Hach model 18900 ratio turbidimeter. The 27Al NMR spectra were measured on a Bruker AC-250 spectrometer equipped with a 10 mm multinuclear probehead.

Methods

Potentiometric measurements. Owing to the extreme slowness by which equilibria are attained in this area, the pre-
sent investigation is based on measurements performed on batch solutions. Approximately 30 stock batches of aluminium lactate solutions within the ranges: 0.004 ≤ B ≤ 0.010 M; 0.008 ≤ C ≤ 0.015 M; C/B = 1, 2, 3 and 5; 1.2 ≤ Zc ≤ 4.0 (where B and C represent the total concentrations of aluminium and lactic acid, respectively) were prepared and stored for 2 weeks. After that time, turbidimetric measurements were undertaken, and all solutions containing precipitates were discarded. The remaining 19 clear solutions were then used to prepare series of solutions at constant C/B and Zc by mixing known volumes of the solutions with various volumes of pure ionic medium. Through this procedure, a total of 137 batches were prepared. The attainment of equilibrium in these solutions were followed through repeated measurements of the free H^+ concentration. Depending on C/B and Zc, the equilibration time varied from a few days up to almost 3 months. The final $-\log [H^+]$ values, on which the present data analysis is based, were obtained from solutions aged for 7 months.

NMR measurements. Time-dependent as well as equilibrium 2Al-NMR measurements were carried out at 295±1 K with the instrument operated in the absolute intensity mode. By calibrating the instrument versus a 5.00×10$^{-3}$ M Al^{3+} solution at $-\log [H^+] = 2.30$, quantitative measures of free Al^{3+} and $\text{AlO}_4^-(\text{Al}_{12}^3(\text{OH})_{12})^{14-}$ were obtained. Owing to the high stability of the spectrometer and the quadrupolar properties of 2Al, resulting in relatively short acquisition times, these spectra were collected without having a D$_2$O lock on the instrument.

Data treatment. The different types of equilibria which must be considered in the present study can be divided into groups as follows.

(i) The binary lactic acid equilibrium

$$\text{HL} + \text{H}^+ \rightleftharpoons L^- + \text{H}_2\text{Al}^{3+}; \beta_{-1.0}$$

(ii) The hydrolytic equilibria of Al^{3+}

$$\text{pH}^+ + q\text{Al}^{13+} \rightleftharpoons \text{H}_q\text{Al}_{(q)}^{+3q}; \beta_{p,q,0}$$

For these equilibria, results evaluated earlier in this series1,2 will be used. Dominating species and corresponding equilibrium constants, valid in 0.6 M NaCl medium, are given in Table 1.

(iii) Three-component equilibria of the general form

$$\text{pH}^+ + q\text{Al}^{13+} + r\text{HL} \rightleftharpoons \text{H}_q\text{Al}_r(\text{HL})_{(r)}^{+q3r}; \beta_{p,q,r}$$

In part 14 of this series formation constants for complexes appearing in the area of 0 ≤ Zc ≤ 0.95 were determined. These constants are also given in Table 1. In the following calculations all of these constants, except the one for $\text{Al}_{12}^3(\text{OH})_{12}^{7-}$, will be considered as known and no attempts to vary them will be made. In the evaluation of the experimental data, the least-squares computer program LETAGROPVRID3 (version ETITTR)5 was used. pgr-triples and corresponding equilibrium constants that "best" fit the experimental data were determined by minimizing the error squares sum $U = \Sigma(H_{\text{calc}} - H_{\text{exp}})^2$. The LETAGRO calculations also give standard deviations of (H) and 3σ(β) defined according to Sillén.6 The computations were performed on a CD CYBER 850 computer.

<table>
<thead>
<tr>
<th>p,q,r</th>
<th>Tentative formula</th>
<th>$\log(\beta_{pqr+3c})$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,1,0</td>
<td>$\text{Al}(\text{OH})^{2+}$</td>
<td>-5.52</td>
<td>2</td>
</tr>
<tr>
<td>-2,1,0</td>
<td>$\text{Al}(\text{OH})^{3+}$</td>
<td>-11.3</td>
<td>2</td>
</tr>
<tr>
<td>-3,1,0</td>
<td>$\text{Al}(\text{OH})_3^{2+}$</td>
<td>-17.3</td>
<td>2</td>
</tr>
<tr>
<td>-4,3,0</td>
<td>$\text{Al}4(\text{OH}){12}^{2+}$</td>
<td>-13.57</td>
<td>2</td>
</tr>
<tr>
<td>-32,13,0</td>
<td>$\text{Al}_5\text{O}4(\text{OH}){12}^{2+}$</td>
<td>-109.2</td>
<td>2</td>
</tr>
<tr>
<td>-4,1,0</td>
<td>$\text{Al}(\text{OH})_3^-$</td>
<td>-23.46</td>
<td>2</td>
</tr>
<tr>
<td>-1,1,1</td>
<td>L^{-}</td>
<td>-3.75 ± 0.001</td>
<td>1</td>
</tr>
<tr>
<td>-2,2,1</td>
<td>AlL^{2+}</td>
<td>-1.21 ± 0.017</td>
<td>1</td>
</tr>
<tr>
<td>-2,1,3</td>
<td>AlL^{3+}</td>
<td>-2.72 ± 0.028</td>
<td>1</td>
</tr>
<tr>
<td>-3,1,3</td>
<td>AlL^{4+}</td>
<td>-4.92 ± 0.14</td>
<td>1</td>
</tr>
<tr>
<td>-3,1,2</td>
<td>$\text{Al}(\text{H}_2\text{O})_4^2-$</td>
<td>-6.17 ± 0.012</td>
<td>1</td>
</tr>
<tr>
<td>-32,13,0</td>
<td>$\text{Al}_5\text{O}4(\text{OH}){12}^{2+}$</td>
<td>-105.5 ± 0.20</td>
<td>This work</td>
</tr>
<tr>
<td>-3,2,1</td>
<td>$\text{Al}_2(\text{OH})_3^{3+}$</td>
<td>-6.86 ± 0.044</td>
<td>This work</td>
</tr>
<tr>
<td>-6,2,2</td>
<td>$\text{Al}_2(\text{OH})_3(\text{H}_2\text{O})_4^2-$</td>
<td>-16.79 ± 0.055</td>
<td>This work</td>
</tr>
<tr>
<td>-36,13,4</td>
<td>$\text{Al}_5\text{O}4(\text{OH}){12}^{2+}$</td>
<td>-106.9 ± 0.25</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fig. 1. Experimental data in the $H^+-\text{Al}^{13+}$--lactic acid system plotted as Z_c vs. $-\log [H^+]$. The drawn curves have been calculated with the equilibrium constants proposed in Table 1.
Data, calculations and results

The analysis of the present data was started by calculating the average number of OH\(^{-}\) groups reacted per C, Z, as a function of C, B, C/B and \(-\log[H^+]\). Z is given by the expression \(Z = (h - H - k_h^{-1})/C\), where \(h\) denotes the free H\(^{+}\) concentration, \(k_h\) denotes the ionic product of water in 0.6 M Na(Cl) medium and \(H\) denotes the total concentration of protons using H\(_2\)O, Al\(^{3+}\) and HL as zero level. Some of these data are given in Fig. 1.

From the very strong concentration dependence and the “steepness” of these data, it can be concluded that the additional complex/complexes are probably polynuclear. By applying the equilibrium model given in Table 1 to these data, a clear indication of the presence of one or several additional aqueous species was obtained. Through this calculation it was, however, also indicated that the slow-forming hydrolytic species Al\(_3\)O\(_2\)(OH)\(_5\)\(^{2-}\) was probably a pre-dominating species in some of the data, especially at low C/B quotients and high Z. As such, and as the formation constant used for this species was evaluated from data where it was formed in very minor amounts, we found it necessary to supplement our data with some binary H\(^{+}\)-Al\(^{3+}\) data from solutions stored and analysed in a manner identical to the ternary H\(^{+}\)-Al\(^{3+}\)-lactic acid solutions.

The H\(^{+}\)-Al\(^{3+}\) system. These data consist of 16 batch solutions at four different total concentrations (0.0009 \(\leq B \leq 0.010\) M) with \(Z_n\), i.e., the average number of OH\(^{-}\) reacted per Al\(^{3+}\), ranging from 1.20 to 2.20. All attempts to prepare solutions at higher \(Z_n\) values resulted in the precipitation of Al(OH)\(_3\). The \(-\log[H^+]\) values of these solutions were repeatedly measured until stable readings were obtained. The evaluation of the equilibrium constant is based on data from solutions aged for more than 2 months. This calculation ended at \(\alpha(H) = 0.25 \times 10^{-2}\) M, and the equilibrium constant obtained was \(\log \beta_{32,13,0} = 105.5 \pm 0.20\). This value was hereafter used in all calculations.

As an indication of the difficulty in determining this equilibrium constant, it can be pointed out that the resulting difference in measured \(-\log[H^+]\) between the present value of \(\beta_{32,13,0}\) and the previous value, 10\(^{-10.9}\), is 0.11 units. In view of the much lower value previously reported it must, however, be concluded that the formation of this species is kinetically hindered in solutions containing complex forming/buffering substances.

An independent validation of the present equilibrium constant was also obtained from series of quantitative \(^27\)Al NMR measurements, some of which are illustrated in Fig. 2. Through these measurements it was found that the registered concentrations of Al\(^{3+}\) as well as of Al\(_3\)O\(_2\)(OH)\(_5\)\(^{2-}\) were in full agreement with those predicted by the potentiometric model. However, even with this revised value for the equilibrium constant of Al\(_3\)O\(_2\)(OH)\(_5\)\(^{2-}\), considerable effects remained to be explained in the three-component system.

The H\(^{+}\)-Al\(^{3+}\)-lactic acid system. The data collected for the present investigation comprises a total of 19 groups with 137 experimental points. In the calculations, these data were supplemented with 10 groups containing 76 experimental points at \(Z \leq 1.20\) from the previous investigation. During the collection of data, a marked increase in equilibration time was observed when \(Z\) exceeded 1.20. As a consequence, the evaluation of the data was divided into two
parts, corresponding to slow (days) and very slow (months) attainment of equilibria, respectively.

(a) Three-component data with $Z_r \leq 1.20$. The mathematical analysis of these data, which, as a point of security, also contained some data from the previous investigation at $Z_r \leq 0.95$, was initiated through a (p,q,r) analysis assuming that only one new complex was present. The principle of this method is to vary successively the equilibrium constant for one (p,q,r) combination at the time until the combination which is able to provide the closest fit to experimental data, i.e. the lowest error squares sum $U = \Sigma(H_{\text{calc}} - H_{\text{exp}})^2$, is identified.

In the present case, the lowest error squares sum was obtained for a species $H_{\text{m}}Al(\text{HL})^{2+}$ but, as this species also left considerable deviations in $\Delta H = H_{\text{calc}} - H_{\text{exp}} \left[\alpha(H) = 0.14 \times 10^{-3} \text{ M} \right]$, it was obvious that the composition found was an average of two or several coexisting species. For this reason, a new (p,q,r) search was performed, now only on data with $C/B = 1$. The result of this analysis is illustrated in Fig. 3, and shows that a complex of the composition $H_{\text{m}}Al(\text{HL})^{2+}$ with $\log \beta_{-3,-2,1} = -6.78 \pm 0.011$ gives a very good fit to these data.

The data evaluation was then continued with a renewed (p,q,r) search on all data, in which the equilibrium constant for $(\pm 3,2,1)$ was refined together with the equilibrium constant for an additional (p,q,r) species. The result of these calculations is illustrated in Fig. 4, and shows that the best explanation of data is obtained assuming the presence of a species $H_{\text{m}}Al(\text{HL})^{2+}$ (log $\beta_{-3,-2,2} = -16.79 \pm 0.055$), together with $H_{\text{m}}Al(\text{HL})^{3+}$ (log $\beta_{-3,-2,1} = -6.86 \pm 0.044$). With these two species, the remaining average residual $\alpha(H)$ became 0.06×10^{-3} M, indicating a good fit to experimental data. These equilibrium constants were then included in the model when data at higher Z_r were examined.

(b) Three-component data at $Z_r > 1.20$. The analysis of data in this region was initiated in the same way as in the $Z_r \leq 1.20$ range, i.e. with a (p,q,r) search assuming one new complex to be formed. This analysis did, however, turn out to be very discouraging as it was found that a large number of (p,q,r) combinations yielded approximately the same fit to experimental data. This is exemplified in Fig. 5, which gives the best possible error squares sums for species containing two lactic acid molecules. The only definitive conclusions which it was possible to draw from these calculations were that the complex formed was of a high nuclearinity, contained ca. -2.57 protons per aluminium and that the number of coordinated ligands was much lower than the number of aluminium ions.

As these qualities closely resemble those for the species $Al_{12}(OH)_{27}^{2+}$, we found it necessary to question once again the formation constant for this species. This calculation ended with log $\beta_{-3,-2,1,0} = -102.5 \pm 0.26$ and with an error squares sum of 17. Compared to the error squares sums reported in Fig. 5, it can thus be concluded that the species with $r > 0$ give a better fit to the experimental data.

Fig. 5. Result of the (p,q,r) analysis on data with $Z_r > 1.20$. The figure gives U_{pq}, assuming one additional complex. In the calculations, the species $(-3,2,1)$ and $(-6,2,2)$ were treated as known. The calculations are based on 98 points giving $U_{pq} = 83$.

Fig. 4. Results of the second (p,q,r) analysis on data with $Z_r \leq 1.20$. The figure gives error-squares sums $U_{pq} \times 10$ assuming the presence of $(-3,2,1)$ and one additional complex. In the calculations, the formation constant for $(-3,2,1)$ was refined together with that of the "new" complex. The calculations are based on 115 points giving $U_{pq} = 53$.

231
The final objection towards the assumption of a higher stability of Al\textsubscript{13}O\textsubscript{4}(OH)\textsubscript{26}3- was, however, obtained from the 27Al NMR spectra of solutions with $B = C = 0.010$ M and $2.0 \leq Z_e \leq 3.5$. In these spectra, only a gradually weakening signal corresponding to the free Al3+ ion could be observed, i.e. the concentrations of Al\textsubscript{13}O\textsubscript{4}(OH)\textsubscript{26}3- in these solutions proved to be negligible. These spectra also showed that the linewidth of the “new” species formed was too wide to be detectable.

To study the transformation of Al\textsubscript{13}O\textsubscript{4}(OH)\textsubscript{26}3- into this “new” species, we performed an experiment in which lactate ions were added to a highly hydrolysed ($Z_e = 2.0$) aluminium solution. The concentrations of Al3+ and Al\textsubscript{13}O\textsubscript{4}[Al\textsubscript{12}(OH)\textsubscript{26}]3+ in this solution were monitored as a function of time via repeated 27Al-NMR measurements. Also, the evolution of $-\log [H^+]$ with time was monitored. The result of this experiment is illustrated in Fig. 6 and shows that, followed by a very fast decrease in the free Al3+ concentration, the concentration of Al\textsubscript{13}O\textsubscript{4}(OH)\textsubscript{26}3+ slowly decreases during tens of days. During this slow transformation process, neither the concentration of Al3+ nor the $-\log [H^+]$ in the solution changes. It can therefore be concluded that the “new” unmeasurable species contains approximately the same number of aluminium ions and the same average number of hydroxyl groups per aluminium as the vanishing Al\textsubscript{13}O\textsubscript{4}(OH)\textsubscript{26}3-. On the other hand, this experiment does not provide any information concerning the number of lactate ions coordinated in the complex.

A renewed (p,q,r) search on EMF data, in which the number of aluminium ions was fixed at 13, was therefore conducted. The result of these calculations is given in Fig. 7 and shows, once again, that several (p,q,r) combinations give rise to more or less identical error squares sums. Our final conclusion is therefore that using our present data, we have no possibilities to determine the stoichiometry of this complex uniquely. To be able to illustrate the significance of the species formed we have, however, tentatively chosen the composition $H_{13}Al_{13}(HL)\textsubscript{13}$ to represent this complex. The choice is not critical, as also other choices result in almost identical distributions.

Our final suggestion for the complexation in the system H^+-Al^{3+}-lactic acid is given in Table 1. The computer program SOLGASWATER,9 equipped with plotting procedures, has been used to prepare a series of distribution diagrams presented in Fig. 8.

Discussion

Equilibria and structures. The present study completes the investigation of the ability of lactic acid to form complexes with the Al3+ ion. A tabulation of proposed complexes and corresponding formation constants from this and the previous investigation is given in Table 1.

In the present study, clear evidence for the formation of ternary polynuclear complexes have been given and, as shown in the distribution diagrams of Fig. 8, these species are all formed in significant amounts at $-\log [H^+] \geq 3.5-4$. A comparison between the speciation at $C/B = 1$ and 5 reveals that the relative importance of the two species $H_{13}Al_{13}(HL)\textsubscript{13}$ and $H_{14}Al_{14}(HL)\textsubscript{14}$ is strongly dependent on this ratio. This gives an explanation of the problem we encountered when we tried to explain all data at $Z_e \leq 1.20$ with one single complex. These diagrams also illustrate the profound importance of the highly condensed, slow-form-
Fig. 8. Distribution diagrams $F_i(-\log [H^+])$, defined as in Fig. 2. The calculations have been performed using the computer program SOLGASWATER using equilibrium constants given in Table 1. The broken curves denote precipitation ranges.

Fig. 9. The solubility of gibbsite ($\log K_{sw} = 9.6$) expressed as $\log S_A$ vs. $-\log [H^+]$ for different total concentrations of lactic acid, C.

Fig. 10. Predominance area diagram showing dominating Al-containing species in a $B = 10^{-3}$ M solution in which amorphous aluminium hydroxide ($\log K_{sw} = 10.5$) is allowed to form.

ing species for which we failed to determine a unique stoichiometry. In fact, this species supersedes the formation of $\text{Al}_3\text{O}_4(\text{OH})_8^{7-}$, which otherwise would have formed close to the precipitation boundary of Al(OH)_2.

The present study has also shown that, in the 1–10 mM concentration range and C/B range of 1–5, the precipitation starts at $-\log [H^+] \approx 5.2$. Assuming aluminium hydroxide to be the solid phase, this precipitation boundary corresponds to a solubility product for Al(OH)_2, i.e. a value in good agreement with a value recently found (10.49 ± 0.08) in the $H^+\text{Al}^{3+}$--MoO$_4^{2-}$ system. This value is considerably higher than the value reported for crystalline gibbsite (9.6), and indicates the precipitate formed to be of an amorphous nature.

With regard to the structures of the different species formed, an investigation of this kind gives no direct information. In the previous article we made comparisons with other Al^{3+}--organic acid systems investigated, and concluded that the species $\text{H}_3\text{Al} \text{(HL)}_2$ probably could be written as $\text{Al(H}_3\text{L)} \text{L}^{n}$, i.e. that it is a species in which the hydroxy group of one of the lactate ions is deprotonated. The same assumption concerning the complex $\text{H}_3\text{Al}_2 \text{(HL)}_2$ would then lead to the tentative formula $\text{Al}_2 \text{(OHL)}_2$ ($\text{H}_3\text{L)}_2$, i.e. to a dihydroxy-bridged species in which both lactate ions are deprotonated and bidentally bound. We have proposed this type of structure, consisting of a central $\text{Al}_2 \text{(OHL)}_2$ core surrounded by one or several ligands, in several of our previously investigated systems, and recently their existence in the solid state [as $\text{Al}_2 (\mu$--OH)$_2$ (nitritotriacetate)$_2$] has also been demonstrated. Also, we believe the species $\text{H}_3\text{Al}_2 \text{(HL)}_2$ to contain the same $\text{Al}_2 \text{(OHL)}_2$ core, i.e. this species should be written as $\text{Al}_2 \text{(OHL)}_2^{3+}$.

This assumption is based on the fact that a species with the same stoichiometry also forms with monocarboxylic (acetic and propionic) acids, in which the nature of the three leaving protons is quite unambiguous. Furthermore, by writing the formation of this species as follows:

$$2\text{Al}^{3+} + 2\text{H}_2\text{O} + \text{L}^- \rightleftharpoons \text{Al}_2 \text{(OHL)}_2^{3+} + 2\text{H}^+$$
with log K(lactate) = −3.29, log K(acetate) = −3.49 and
log K(propionate) = −3.43, its close similarity in stability
in the three systems is emphasized.

Finally, with regard to the high-nuclearity species
H$_3$Al$_4$(OH)$_6$[2+], we have no suggestions either as to its
structure or as to its formula. However, since this complex
does not give rise to a peak in the tetrahedral range of the
27Al-NMR spectra, it is probably safe to conclude that this
is not a species in which lactate ions have become coordinated
to the hydrolytic species Al$_3$O$_4$(OH)$_2$[2+].

Modelling calculations. In previous papers of this series,
the potential ability of various ligands to affect the aquatic
behaviour of aluminium has been indicated via comput-
erized modelling in which crystalline gibbsite (log$^*K_{\alpha}$ =
9.6) has been used as a solubility-limiting phase. In the
present system the corresponding calculation, which is il-
ustrated in Fig. 9, shows that relatively high lactate con-
centrations are needed to cause any substantial solubili-
ization of this phase. It can also be concluded that this
influence is restricted to slightly acidic solutions and that
(not illustrated) the solubilization mainly is caused by the
formation of Al$_2$[2+]. Al$_2$[2+] and Al(H$_3$)[L]$, all determined
in the previous paper on this subject.

In the present paper we have, however, shown that a
more valid solubility for Al(OH)$_3$(s) in mixtures with lac-
tate is log$^*K_{\alpha}$ = 10.5. When this higher solubility is ap-
plicated, all solubility curves are shifted upwards and, signif-
icantly, the species Al$_3$O$_4$(OH)$_2$[2+] and H$_3$Al$_2$(OH)$_6$[2+]
both become predominating close to the precipitation
boundary of Al(OH)$_3$(s). This is illustrated in Fig. 10,
which gives areas of predominating Al-containing com-
plexes in a solution with $B = 10^{-3}$ M in which amorphous
aluminium hydroxide is allowed to form.

To characterize the speciation in freshly prepared alu-
munium–lactate mixtures, in which these highly condensed
species have not had the time to form, we have prepared a
type of "metastable" predominance diagram in which the
solubility of Al(OH)$_3$(s) was further increased to log$^*K_{\alpha}$ =
11.2* and in which the formation constants for Al$_3$O$_4$
(OH)$_2$[2+] and H$_3$Al$_2$(OH)$_6$[2+] were put to zero. Under
such circumstances it is found (cf. Fig. 11) that the species
Al$_3$O$_4$(OH)$_2$(H$_3$)[L]$, becomes the predominating aqueous
species close to the precipitation boundary. The net neutral
charge of this species, as well as of Al(H$_3$)[L]$, might be of
importance when the bioavailability and toxicity of aluminium–lactates are considered. It should, however, be noted
that even under these highly "metastable" conditions, a
considerable excess of lactate ions is needed to form pre-
dominating amounts of these complexes.

With regard to conditions prevailing in the human body,
it can be concluded that lactate complexes are of minor
importance as a possible low molecular weight carrier of
Al$^{3+}$ in blood plasma. A model calculation, performed at
pH 7.4 and a total concentration of lactate and aluminium of
10^{-4} and 10^{-6} M, respectively, showed that only 3% of
the aluminium was bound in the complex Al$_3$O$_4$(OH)$_2$
(H$_3$)[L]$. The remaining 97% was found as the species
Al(OH)$_3$. Furthermore, even this minor amount of bound
aluminium vanishes if the competitive complexation of ci-
trate ions is taken into consideration.

Acknowledgements. We gratefully acknowledge Professor Staffan Sjöberg for many helpful and constructive discuss-
ions and valuable comments on the manuscript. This work
forms part of a program financially supported by the Swed-
ish Natural Science Research Council.

References

 (1969) 353.
11. Baes, C. F. and Mesmer, R. E. The Hydrolysis of Cations,
14. Öhman, L.-O. and Sjöberg, S. In Kramer, J. R., and Allen,
 H. E., Eds. Metal Speciation, Lewis Publishers, Chelsea 1988,
 Chap. 1.

Received July 5, 1989.