The Molecular Structure of Tungsten Hexamethoxide, W(OCH₃)₆, by Gas Electron Diffraction Arne Haaland, a,* Kristin Rypdal, a Hans V. Volden, Eberhard Jacob and Johann Weidlein^c ^aDepartment of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo 3, Norway, ^bM.A.N. Neue Technologie, Abteilung Physikalische Chemie, Dachauer Strasse 667, D-8000 München, Federal Republic of Germany and ^cInstitute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80, Federal Republic of Germany Haaland, A., Rypdal, K., Volden, H.V., Jacob, E. and Weidlein, J., 1989. The Molecular Structure of Tungsten Hexamethoxide, W(OCH₃)₆, by Gas Electron Diffraction. – Acta Chem. Scand. 43: 911–913. In this note we report the molecular structure of W(OMe)₆ determined by gas electron diffraction (GED), as part of what we hope will be a series of studies of metal alkoxides.¹ W(OMe)₆ was synthesized by low temperature cocondensation of WF₆ and Si(OMe)₄ as described elsewhere.² The GED data were recorded on Balzers Eldigraph KDG-2 with a nozzle temperature of $105\pm10\,^{\circ}$ C. Structure refinements were based on data from six plates obtained with a nozzle-to-plate distance of 50 cm (s from 13.75 to $130.000~\text{nm}^{-1}$ with increment $\Delta s = 1.25~\text{nm}^{-1}$) and seven plates obtained with a nozzle-to-plate distance of 25 cm (s from 25.00 to 250.00 nm⁻¹ with $\Delta s = 2.50~\text{nm}^{-1}$). Optical densities were recorded on a Joyce–Loeble densiometer and processed by standard procedures.³ Atomic scattering factors were taken from Ref. 4.⁴ Calculated intensities included three-atom scattering. Backgrounds were drawn as eighth degree polynominals to the difference between total and calculated molecular intensities. The infrared and Raman spectra (including polarization measurements) of W(OMe)₆ in the solid and liquid phase and in solution have been recorded and assigned.⁵ The spectra are compatible with a WO₆ core of octahedral symmetry, but show that WOC angles are non-linear. Since no W-O torsional modes were assigned, the spectra offer little information on the overall symmetry of the molecule. The highest possible molecular symmetry is D_{3d} . One such model is shown in Fig. 1(A). (Another D_{3d} model, obtained from that in the figure by rotating each OMe group 180° about the W-O bond, may be discarded out of hand since this would lead to prohibitively short C···C contacts.) In a D_{3d} model the trans MeOWOMe fragments are in a planar anti conformation and are constrained to lie in symmetry planes. Rotation of each OMe group about the W-O bonds by the same angle in such a way that the centre of symmetry (and the anti conformation of the trans MeOWOMe fragments) is retained, yields the S_6 model shown in Fig. 1(B), while rotation under retention of the twofold symmetry axes yields the D_3 model shown in Fig. 1(C). All our refinements were based on the assumption that the WO₆ core has octahedral and the methyl groups C_{3v} symmetry. Since torsional modes in the vibrational spectrum are unknown, shrinkage corrections were neglected. The D_{3d} model is described by six independent para- Fig. 1. Molecular models of W(OMe)₆ viewed down a C_3 symmetry axis; (A) D_{3d} model; (B) S_6 model; and (C) D_3 (best model). In all models \angle WOC = 132°. Carbon atoms (Table 1) are numbered as the oxygen atom to which they are bonded. ^{*} To whom correspondence should be addressed. Table 1. Internuclear distances, vibrational amplitudes (I) and valence angles of W(OMe)₆. Molecular symmetry D_3 . Estimated standard deviations in parentheses in units of the last figure. | | r _a /pm | //pm | |----------------------|--------------------|--------------------| | Bond distances | | | | W-O | 190.2(3) | 4.8(3) | | O-C | 140.1(3) | 5.3(3) | | C-H | 109.5(5) | 5.8(7) | | Non-bonded distances | | | | WC | 302.9(4) | 8.1(8) | | W···H | 313(3) | 38(10) | | W···H | 356(5) | 14(7) | | W···H | 390(2) | 11(5) | | 00 | 269.0(3) | 12.5(5) | | 00 | 380.4(4) | [8.5] ^a | | O(3)···C(1) | 306(2) | 17(3) ^b | | O(2)···C(1) | 330(2) | 17(3) ^b | | O(5)···C(1) | 383(2) | 17(3) ^b | | O(6)···C(1) | 403(2) | 17(3) ^b | | O(4)···C(1) | 486(1) | 12(1) | | C(1)···C(2) | 378(5) | 44(7)° | | C(1)···C(3) | 412(3) | 44(7) ^c | | C(1)···C(6) | 540(2) | 44(7) ^c | | C(1)···C(4) | 572(1) | 34(10) | | Valence angles/° | | | | ∠WOC | 132.4(4) | | | ∠HCH | 107(1) | | | Dihedral angles/° | | | | φ[O(2)WO(1)C(1)] | 61(2) | | | φ(WOCH) | 92(5) | | | R4% | 3.70 | | ^aNot refined. ^{b,c}Groups of amplitudes assumed equal. ^d $R = [\Sigma w(I_{\rm obs} - I_{\rm calc})^2/ZwI_{\rm obs}^2]^{1/2}$. meters, for instance the W-O, O-C and C-H bond distances, the ∠WOC and ∠HCH valence angles and a methyl group tilt angle. Attempts to redefine the tilt angle did not succeed, and it was subsequently fixed at 3° (in such a way that W···H distances increased), which was the value that yielded the best fit. The S_6 and D_3 models require two more parameters, viz. the dihedral angles $\varphi(W-O) = \varphi[O(2)WO(1)C(1)]$ and $\varphi(O-C) = \varphi(WOCH)$. The best fit between observed and calculated intensities was obtained with the D_3 model: least-squares refinement of seven structure parameters and twelve r.m.s. vibrational amplitudes yielded the best values listed in Table 1. (The estimated standard deviations have been multiplied by a factor of 2.5 to compensate for data correlation and expanded to include an estimated scale uncertainty of 0.1%). Experimental and calculated radial distribution curves for the best model are shown in Fig. 2. Refinements of the S_6 model yielded R-factors of ca. 6%, about 1.5 times higher than for the D_3 model, and failed to converge properly. Inspection of calculated radial distribution curves showed that the S_6 model fails to reproduce the very broad and low peak at r = 570 pm, which in the D_3 model is assigned to the largest C···C distance, Fig. 2. Experimental (\bullet) and calculated (-) radial distribution curves for W(OMe)₆. Below: Difference curve. Artificial damping constant $k = 20 \text{ pm}^2$. $C(1)\cdots C(5)$: in the S_6 model this distance is found at about 605 pm. The D_{3d} model could not be brought into satisfactory agreement with experimental data, and can be ruled out with confidence. ## **Discussion** Of the three models in Fig. 1 only the D_3 model is in satisfactory agreement with the data. The gas may have consisted exclusively of this conformer (and its enantiomer), but the presence of the S_6 or other less symmetric conformers has not been ruled out. It is not clear why the D_3 conformer should be particularly stable. The dihedral angle $\varphi[O(2)WO(1)C(1)] = 61(2)^{\circ}$ is reasonably close to the value corresponding to perfect staggering of O-C bonds with respect to W-O bonds, $\varphi = 45^{\circ}$. The wide angle, $\angle WOC = 132.5(5)^{\circ}$, may be due to tungsten-methyl and oxygen-methyl repulsions: W···C = 304 pm and O(2/3)···C(1) = 330/307 pm, or to W-O π -bonding. As expected, the W-O bond distance falls between the W-F bond distance in WF₆, 183.2(3) pm by GED,⁶ and the W-N bond distance in W(NMe₂)₆, 201.6(6) pm by XRD⁷ and 203.5(5) pm by GED.⁸ W(NMe₂)₆ has T_d symmetry in both the crystal⁷ and gas⁸ phase, with each N-C bond eclipsing a W-N bond. Since the O-C bonds in W(OMe)₆ are staggered with respect to the W-O bonds, we suggest that the conformation of the amide is determined by inter-ligand Me···Me repulsions. Finally, we note that the W-O bond distance in $W(OMe)_6$ is 5-7 pm greater than found in two homoleptic W(IV) aryloxides.⁹ Acknowledgement. We are grateful to the Norwegian Research Council for Science and the Humanities and to the VISTA project for financial support. ## References - Thaler, E. G., Rypdal, K., Haaland, A. and Caulton, K. G. Inorg. Chem. 28 (1988) 2431. - 2. Jacob, E. Angew. Chem. Suppl. (1982) 317. - 3. Andersen, B., Seip, H. M., Strand, T. G. and Stølevik, R. Acta Chem. Scand. 23 (1969) 3224. - 4. Schäfer, L., Yates, A. C. and Bonham, R. A. J. Chem. Phys. 55 (1971) 3055. - Tatzel, G., Greune, M., Weidlein, J. and Jacob, E. Z. Anorg. Allg. Chem. 83 (1986) 533. - 6. Seip, H. M. and Seip, R. Acta Chem. Scand. 20 (1966) 2698. - 7. Galyer, A. and Wilkinson, G. J. Chem. Soc., Dalton Trans. (1976) 2235. - 8. Hagen, K., Holwill, C.J., Rice, D.A. and Runnacles, J.D. Acta Chem. Scand., Ser. A 42 (1988) 578. - 9. Listemann, M. L., Schrock, R. R., Dewan, J. C. and Kolodziej, R. Inorg. Chem. 27 (1988) 264. Received April 26, 1989.