Prediction of Entropy of Vaporization Based on Correlation with the Normal Boiling Point

Reidar Stølevik

The University of Trondheim, Department of University, AVH, N-7055 Dragvoll, Norway

Stølevik, R., 1989. Prediction of Entropy of Vaporization Based on Correlation with the Normal Boiling Point. – Acta Chem. Scand. 43: 860–867.

It has been demonstrated that the entropy of vaporization of a liquid may be estimated from the simple formula $\Delta S_v^\circ = A \exp(-\Theta/T)$, where T is the normal boiling point of the liquid. The empirical parameters A and Θ have been established for the elements and a larger number of inorganic XY, XY₂, XY₃ and XY₄ halides, and some hydrides. These parameters have characteristic values for each family of structurally related compounds. Missing ΔS_v° values may be estimated from our formula if only the normal boiling point is known. Average deviations between observed and calculated values were typically 5–10%. Large deviations from the normal values have been discussed.

It is well known that the entropy of vaporization (ΔS_v°) of many liquids at the normal boiling point (T) is approximately equal to 10.6R (Trouton's rule), where R is the gas constant. According to this rule the heat of vaporization (ΔH_v°) may be obtained from the simple formula $\Delta H_v^{\circ} \simeq 10.6RT$.

We want to demonstrate that a superior rule is the simple function $\Delta S_{\rm v}^{\circ} = A \exp(-\Theta/T)$. Here A and Θ are empirical parameters, and their values have to be established from the available observations. The values A/R = 10.6 and $\Theta/K = 0$ correspond to Trouton's rule. the function increases from zero at T/K = 0 and approaches the value of A asymptotically when $T \gg \Theta$. $\Delta S_{\rm v}^{\circ}$ is always less than A.

The same function has already been used in a previous paper¹ in order to correlate the standard entropy and standard heat capacity of a gas at 25 °C with the normal boiling point of that compound. Observed heats of vaporization and boiling points were taken from Ref. 2.

Monoatomic compounds

Values of heats of vaporization $\Delta H_{\rm v}^{\circ}$ for monoatomic elements have been plotted against the values of the normal boiling points in Fig. 1. A straight line corresponding to Trouton's rule is also shown. Clearly the rule is approximately followed for elements with T less than about 2000 K. However, for elements with higher boiling points the deviations are significant. At 5000 K the deviations are as large as 50 %.

 $\Delta H_{\rm v}^{\circ}$ values for the monoatomic elements in periods 4, 5 and 6 are shown in Figs. 2–4. In each diagram a smooth curve is also shown. This curve has the simple formula $\Delta H_{\rm v}^{\circ} = AT \exp(-\Theta/T)$, corresponding to $\Delta S_{\rm v}^{\circ} = A \exp(-\Theta/T)$. The best values of the parameters A and Θ must be determined from the data. Thus, the parameter values are as follows: A = 20.9R and $\Theta = 1313$ K for

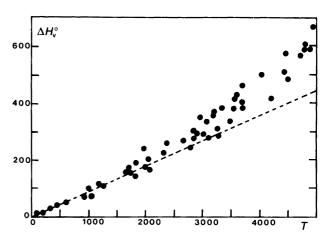


Fig. 1. Heats of vaporization ΔH_v° (kJ mol⁻¹) for monoatomic elements at the normal boiling point T (K). The broken line corresponds to Trouton's rule.

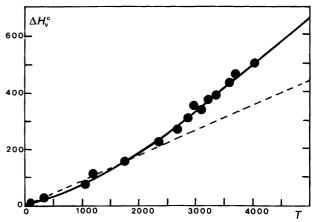


Fig. 2. Heats of vaporization $\Delta H_{\rm v}^{\circ}$ (kJ mol⁻¹) for period-4 elements at the normal boiling point T (K). The broken line corresponds to Trouton's rule, while the unbroken curve has the formula $\Delta H_{\rm v}^{\circ} = 174 T {\rm exp}(-1313/T)$.

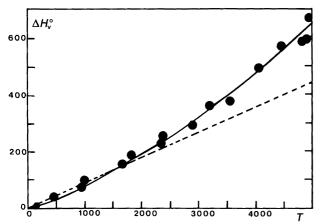


Fig. 3. Heats of vaporization $\Delta H_{\rm v}^{\circ}$ (kJ mol⁻¹) for period-5 elements at the normal boiling point T (K). The broken line corresponds to Trouton's rule, while the unbroken curve has the formula $\Delta H_{\rm v}^{\circ} = 138 T \exp(-550/T)$.

period 4, A = 16.6R and $\Theta = 550$ K for period 5, and A = 18.2R and $\Theta = 1150$ K for period 6.

Boiling points and ΔS_v° values are shown in Table 1 for the elements of periods 4, 5 and 6, including those elements that are not monoatomic. Using the parameter values above, the average deviation between calculated ΔS_v° values and the experimental values in Table 1 are 5% for periods 4 and 5, while for period 6 the average deviation is 10%. If Trouton's rule is used, the average deviations become 15% (period 4), 30% (period 5) and 25% (period 6). Thus the simple formula $\Delta S_v^{\circ} = A \exp(-\Theta/T)$ is superior to the rule that $\Delta S_v^{\circ} \simeq 88 \text{ J mol}^{-1} \text{ K}^{-1}$.

For the elements As₄, Se₆, Br₂, Sb₄, Te₂, I₂ and At₂ the parameter established above should not be used. If these

elements were monoatomic the following ΔS_v° values would be expected according to our formula: 46 (Se), 3 (Br), 103 (Sb), 89 (Te) and 41 (I) J mol⁻¹ K⁻¹.

Even among the monoatomic elements substantial deviations from the general trends exist. Thus the following ΔS_v^o values (in J mol⁻¹ K⁻¹) were calculated: 49 (K), 78 (Rb), 47 (Cs), 57 (Zn), 81 (Cd) and 24 (Hg). For the noble gases the deviations are dramataic. However, the formula $\Delta S_v^o = 10.5 R \exp(-11/T)$ reproduces the experimental values for the noble gases within ± 5 %, except that He has the very low value $\Delta S_v^o = 2.3 R$ at T = 4.2 K.

Data for the lanthanides and the actinides are shown in Fig. 5 and Table 2. For boiling points less than about 3500 K the simple rule that $\Delta S_v^{\circ} \approx 88 \text{ J mol}^{-1} \text{ K}^{-1}$ is quite

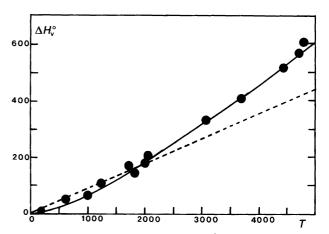


Fig. 4. Heats of vaporization $\Delta H_{\rm v}^{\circ}$ (kJ mol $^{-1}$) for period-6 elements at the normal boiling point T (K). The broken line corresponds to Trouton's rule, while the unbroken curve has the formula $\Delta H_{\rm v}^{\circ} = 151\,T{\rm exp}(-1150/T)$.

Table 1. The entropy of vaporization ΔS_v° (J mol⁻ K⁻¹) at the normal boiling point T for monoatomic elements (atomic Nos. 19–86).

Period 4			Period 5			Period 6		
	T/K	ΔS°		T/K	ΔS_{v}°		T/K	ΔS_{v}°
K	1039	76	Rb	961	79	Cs	978	69
Ca	1767	88	Sr	1654	96	Ba	2123	64
Sc	3021	110	Y	3537	104	La	3693	109
Ti	3558	119	Zr	4473	127	Hf	4723	121
٧	3623	127	Nb	5031	135	Ta	5807	131
Cr	2963	115	Mo	4923	120	W	5773	143
Mn	2333	95	Tc	4840	121	Re	5950	118
Fe	3023	113	Ru	4323	120	Os	5298	139
Co	3373	113	Rh	4033	123	lr	4823	127
Ni	3193	117	Pd	3213	113	Pt	4443	110
Cu	2843	108	Ag	2428	106	Au	3081	111
Zn	1180	97	Cď	1038	96	Hg	630	94
Ga	2676	101	In	2353	99	ΤΙ	1730	96
Ge	3123	105	Sn	2896	102	Pb	2024	88
As₄	_	-	Sb₄	1860	104	Bi	1837	83
Se ₆	985	109	Te ₂	1263	40	Po	1235	84
Br ₂	333	89	اء	458	92	At ₂	_	_
Kr	120	76	Хe	165	77	Rn	211	86

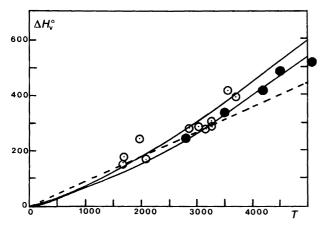


Fig. 5. Heats of vaporization ΔH_v° (kJ mol⁻¹) for lanthanides and actinides at the normal boiling point T (K). The broken line corresponds to Trouton's rule, while the upper unbroken curve for the lanthanides (\bigcirc) has the formula $\Delta H_v^\circ = 138 T \exp(-909/T)$ and the lower curve for the actinides (\blacksquare) has the formula $\Delta H_v^\circ = 128 T \exp(-955/T)$.

Table 2. Entropy of vaporization $\Delta S_{\rm v}^{\rm o}$ (J mol $^{\rm -}$ K $^{\rm -1}$) at the normal boiling point T for monoatomic elements (lanthanides and actinides).

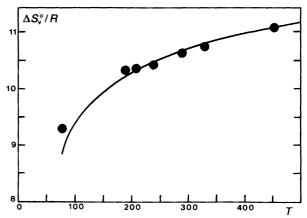
Lantha	nides		Actinides			
	T/K	ΔS_{v}°		T/K	ΔS°	
Се	3743	106	Th	5123	100	
Pr	3293	101	Pa	4500	107	
Nd	3300	90	U	4203	99	
Pm	_	_	Np	5508	61	
Sm	2073	80	Pu	3503	96	
Eu	1712	103	Am	2873	83	
Gd	3273	92	Cm ^a			
Tb	3073	95	Bk			
Dy	2873	98	Cf			
Ho	2873	98	Es			
Er	3173	88	Fm			
Tm	2000	124	Md			
Yb	1700	94	No			
Lu	3600	115	Lr			

^aFor Cm-Lr see discussion in the text.

satisfactory. The best parameters corresponding to the smooth curves in Fig. 5 are A=16.6R and $\Theta=909$ K for the lanthanides, and A=15.4R and $\Theta=955$ K for the actinides. These parameter values reproduce the experimental data with an average deviation of about 10%. However, for the element Nb (T=5508 K) the expected value of ΔS_v^o is 13R according to our formula. The experimental value is only 7.3R. For Tm the expected value is 10.5R, while the observed value is 14.9R.

Boiling points for actinides after Am are not recorded in the literature. However, the following correlations of boiling points and $\Delta H_{\rm v}^{\circ}$ values (kJ mol⁻¹) are predicted: 160 (T = 2000 K), 280 (T = 3000 K), 400 (T = 4000 K), 530 (T = 5000 K), 655 (T = 6000 K), using the parameter

Table 3. Entropy of vaporization ΔS_{v}^{o} (J mol⁻ K⁻¹) for diatomic compounds at the normal boiling point T.


	- -	
	T/K	$\Delta \mathcal{S}_{v}^{\circ}$
Br ₂	332	89
BrF	293	88
Cl ₂	239	86
HBr	206	86
HCI	188	86
HI	238	83
l ₂	457	92
H ₂	20.4	44
F ₂	85	77
CIF	183	85*
DBr	207	86 <i>ª</i>
DCI	188	85 <i>*</i>
DI	238	88ª
ICI	371	91 <i>ª</i>
CsBr	1573	96
CsCl	1593	72
Csl	1553	96
LiBr	1562	94
Lil	1451	67
RbBr	1625	96
RbCl	1654	93
Rbl	1577	96
AgBr	1833	105
AgCl	1837	96
Agl	1778	82
NaBr	1720	93
TIBr	1098	94
TICI	1089	95
TII	1118	93

^aEstimated value ±3%.

values above. The expected uncertainly of these values is about $\pm 10\%$.

Diatomic compounds

Data for diatomic single-bonded compounds are shown in Table 3 and Fig. 6. The data for T < 500 K are best repro-

Fig. 6. Entropies of vaporization ΔS_{v}° for single-bonded diatomic compounds at the normal boiling point T (K). The curve has the formula $\Delta S_{v}^{\circ}/R = 11.7 \exp(-25/T)$.

Table 4. Entropy of vaporization ΔS_v° (J mol⁻ K⁻¹) for triatomic compounds (bromides and iodides) at the normal boiling point *T*.

Bromide	S		lodides		
	T/K	ΔS_{v}°		T/K	ΔS°,
BeBr ₂	794	126	Bal ₂	2340	79
CdBr ₂	1136	100	Bel ₂	755	128
CaBr ₂	2083	96	Cdl ₂	1069	100
PbBr ₂	1185	100	Cal ₂	2028	88
MgBr ₂	1431	104	Fel2	1366	77
MnBr ₂	1300	87	Pbl_2	1105	107
HgBr ₂	595	96	Hgl_2	623	95
SrBr ₂	2419	80	Snl ₂	990	101
SnBr ₂	895	152	Srl ₂	2181	87
ZnBr ₂	923	107	$Zn\bar{l}_2$	1003	96
ZrBr ₂	1555	85	Zrl_2	1300	87
CuBr ₂	1173	100ª	Eul ₂	1850	88ª
EuBr ₂	2153	100ª	$Mn\bar{l}_2$	1290	88ª
FeBr ₂	1207	100ª	Sml ₂	1856	88ª
SmBr ₂	2153	100ª	Ybl	1603	88ª
YbBr ₂	2103	100ª	Mgl₂	1255	88ª

^aEstimated value ±10%.

Table 5. Entropy of vaporization ΔS_{v}° (J mol⁻ K⁻¹) for triatomic compounds (fluorides and chlorides) at the normal boiling point T.

Fluorides			Chloride	s	
	T/K	ΔS_{v}°		T/K	ΔS_{v}°
BaF ₂	2410	118	BaCl ₂	2302	107
BeF ₂	1448	138	BeCl ₂	805	130
CdF,	2033	107	CdCl ₂	1234	101
CaF ₂	2783	111	CaCl ₂	1873	126
CoF	2012	110	CrCl ₂	1573	126
CuF ₂	1722	107	FeCl ₂	1297	85
PbF ₂	1573	100	PbCl ₂	1226	103
MgF_2	2499	106	MgCl ₂	1710	91
HgF ₂	920	100	MnCl ₂	1504	99
SrF ₂	2759	116	HgCl ₂	577	102
ZnF ₂	1773	104	SrCl ₂	2331	106
ZrF_2	2529	114	SnCl ₂	925	88
EuF ₂	2700	111ª	ZnCl ₂	1005	119
MnF_2	2093	111ª	ZrCl ₂	1565	121
NiF ₂	2013	111ª	EuCl ₂	2300	103ª
SmF ₂	2700	111ª	InCl ₂	833	103ª
YbF ₂	2653	111ª	SmCl ₂	2303	103ª
_			TeCl ₂	601	103ª
			YbCl ₂	2203	103ª

^aEstimated value ±10%.

duced by the smooth curve corresponding to $\Delta S_{\rm v}^{\circ} = 11.7R{\rm exp}(-25/T)$. The average deviation between calculated and observed values is 3%. For most compounds having boiling points between 1000 and 2000 K the $\Delta S_{\rm v}^{\circ}$ values are in the range from 10R to 11.6R, while our formula predicts values close to 11.4R and less than 11.7R. The compounds CsCl, LiI, AgBr and AgI show significant deviations from the general trend. The following $\Delta H_{\rm v}^{\circ}$

values were predicted: 15.6 (ClF), 17.8 (DBr), 16.0 (DCl), 20.9 (DI) and 33.8 (ICl) in kJ mol⁻¹, with an expected uncertainty of about $\pm 3\%$.

Triatomic compounds

Data for the XY₂ compounds are shown in Tables 4 and 5. The general trends are shown in Figs. 7 and 8. It seems a reasonable approximation, for these compounds, to assume that ΔS_v° is a constant. Average values are 13.4R (fluorides), 12.4R (chlorides), 12.0R (bromides) and 10.6R (iodides).

The complete set of $\Delta S_{\rm v}^{\circ}$ values for the Group IIB XY₂ halides is shown in Table 6. These values show a variation of about 25%. The following trends are observed among the $\Delta S_{\rm v}^{\circ}$ values: fluorides \simeq chlorides > bromides > iodides, and ZnY₂ \simeq CdY₂ > HgY₂.

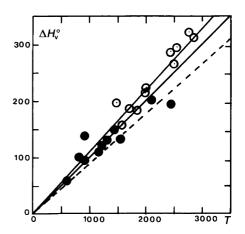


Fig. 7. Heats of vaporization ΔH_{v}° (kJ mol⁻¹) for XF₂ compounds (\odot) and XBr₂ compounds (\odot) at the normal boiling point T (K). The straight lines have the formulas $\Delta H_{v}^{\circ} = 111T$ (fluorides) and $\Delta H_{v}^{\circ} = 103T$ (bromides), while the broken line corresponds to Trouton's rule.

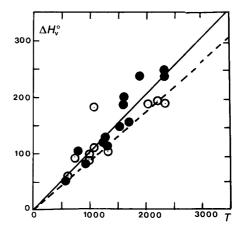


Fig. 8. Heats of vaporization $\Delta H_{\rm v}^{\circ}$ (kJ mol $^{-1}$) for XCl $_2$ compounds (\odot) and XI $_2$ compounds (\odot) at the normal boiling point T (K). The straight lines have the formulas $\Delta H_{\rm v}^{\circ} = 100 T$ (chlorides) and $\Delta H_{\rm v}^{\circ} = 88 T$ (iodides).

Table 6. ΔS_v° (J mol $^-$ K $^{-1}$) values of the Group IIB halides XY $_2$ at the normal boiling point.

	F	CI	Br	I	Average ^a
Zn	104	119	107	96	107
Cd	107	101	100	100	102
Hg	100	102	96	95	98
Average ^b	104	107	101	97	⟨102⟩ ^c

^aHorizontally. ^bVertically. ^cAverage of all values.

Table 7. ΔS_v° (J mol $^-$ K $^-$ 1) values of the Group IIA halides XY $_2$ at the normal boiling point.

	F	CI	Br	<u> </u>	Average ^a
Be	138	130	126	128	131
Mg	106	91	104	$(96\pm8)^d$	100
Ca	111	126	96	88	105
Sr	116	106	80	79	95
Ва	118	107	с	79	101
Average ^b	113	108	93	82	⟨100⟩ ^e

^aIncluding all values horizontally. ^bNot including BeY₂ values.

Except for the two compounds MgI_2 and $BaBr_2$, a complete set of ΔS_v° values is also available for the Group IIA halides, as shown in Table 7. Clearly, all BeY_2 compounds have exceptionally large ΔS_v° values. The following trends are observed: fluorides > chlorides > bromides > iodides. However, there are exceptions to these rules. Thus, the values of $CaCl_2$ and $MgCl_2$ are unusual compared with the remaining values.

For MgI₂ only the boiling point was available. However, the ΔS_{ν}° values 10.6R (Table 4) and 11.6R (Table 7) were

estimated here. The predicted $\Delta H_{\rm v}^{\circ}$ value is therefore equal to $116 \pm 10 \text{ kJ mol}^{-1}$ for MgI₂ at the normal boiling point (1255 K).

Finally, one may consider the question whether linear or bent triatomic molecules have significantly different ΔS_v^o values? The average values are $(11.8 \pm 2.4)R$ and $(11.7 \pm 1.8)R$ for linear and bent compounds, respectively (not including the BeY₂ values). Thus, the difference is insignificant.

Tetra-atomic compounds

Data for XY₃ compounds are shown in Table 8 and Figs. 9 and 10. It is seen from Fig. 9 that Trouton's rule is a reasonable approximation for most compounds. However, the ΔS_{v}° values show (Fig. 10) that XY₃ molecules should be treated as three different families. The best parameter values are A = 14.8R and $\Theta = 59$ K for fluorides, A = 11.8R and $\Theta = 43$ K for planar molecules and

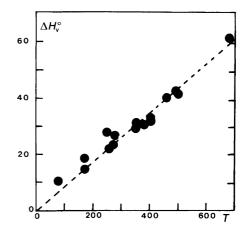


Fig. 9. Heats of vaporization $\Delta H_{\rm v}^{\circ}$ (kJ mol⁻¹) for XY₃ compounds at the normal boiling point T (K). The broken line corresponds to Trouton's rule.

Table 8. Entropy of vaporization ΔS_{v}° (J mol⁻¹ K⁻¹) for tetra-atomic compounds at the normal boiling point T.

Non-planar molecules		Planar molecules			Fluorides			
	T/K	ΔS_{v}°		T/K	ΔS_{v}°		T/K	ΔS_{v}°
SbBr ₃	562	125	BBr ₃	365	84	BF_3	172	112
SbCl ₃	493	88	BCl ₃	285	84	BrF₃	399	107
Sbl₃	673	91	Bl ₃	488	87	CIF ₃	285	96
AsBr ₃	494	85	All_3	658	92ª	NF_3	144	81
AsCl ₃	403	79	GaBr ₃	553	91 <i>ª</i>	PF_3	172	89
BiBr ₃	733	103	GaCl ₃	474	90ª	SbF₃	649	112ª
BiCl ₃	720	101	Gal ₃	619	92ª	AsF ₃	324	102ª
PBr ₃	446	89	· ·			PBrF₂	257	89
	348	88				PBr₂Ē	325	87
Asl ₃	676	99ª				PCIF,	256	110
AuČl₃	502	90ª				-		
NCl ₃	344	76ª						

^aEstimated value ±5 %.

^eDecomposes. ^dEstimated from MgBr₂, CaBr₂ and Cal values.

^eAverage of all values.

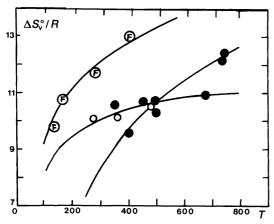
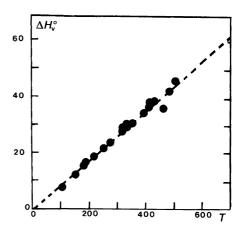


Fig. 10. Entropies of vaporization ΔS_v° at the normal boiling point T (K). The upper curve for fluorides (F) has the formula $\Delta S_v^\circ/R = 14.8 \exp(-59/T)$. The two lower curves have the formulas $\Delta S_v^\circ/R = 11.8 \exp(-43/T)$ for planar molecules (\bigcirc), and $\Delta S_v^\circ/R = 15.7 \exp(-189/T)$ for non-planar (\blacksquare) molecules.

A=15.7R and $\Theta=189$ K for nonplanar molecules. For nine compounds, only the boiling points were recorded. The parameter values above were used when estimating $\Delta S_{\rm v}^{\rm o}$ values for these compounds, with an uncertainty of about ± 5 %.

Clearly the fluorides have $\Delta S_{\rm v}^{\circ}$ values that are about 20% higher than those of the remaining compounds. However, both BF₃ and SbBr₃ are exceptions from the general trends.


Boiling points as well as $\Delta S_{\rm v}^{\circ}$ values are known for three unsymmetrical fluorides. Thus PBrF₂ has a $\Delta S_{\rm v}^{\circ}$ value close to the expected value for an XF₃ compound with $T=257~{\rm K}$. Although PBr₂F has a much higher boiling point than PBrF₂, the $\Delta S_{\rm v}^{\circ}$ value is lower, and approximately equal to the $\Delta S_{\rm v}^{\circ}$ value of PCl₃. The $\Delta S_{\rm v}^{\circ}$ value for PClF₂ is exceptionally high, even for a fluoride.

We predict the following $\Delta H_{\rm v}^{\circ}$ values (kJ mol⁻¹): 67 (AsI₃), 45 (AuCl₃), 26 (NCl₃), 61 (AlI₃), 50 (GaBr₃), 43 (GaCl₃), 57 (GaI₃), 73 (SbF₃) and 33 (AsF₃), with an expected uncertainty of about ± 5 %.

Penta-atomic compounds

Data for halides as well as hydrides are shown in Table 9 and Figs. 11 and 12. The best parameter values are A = 12.7R and $\Theta = 72$ K for symmetrical halides and A = 11.4R and $\Theta = 27$ K for hydrides.

As seen from Fig. 12, the two curves tend to overlap in the region between 300 and 400 K. However, the hydrides with boiling points between 100 and 300 K are significantly better represented by the first set of parameters. Unfortunately, HCF₃ is the only penta-atomic fluoride with an observed ΔS_{v}° value. It is our experience that fluorides have relatively high ΔS_{v}° values compared with other halides in the same family. Thus, the fluorides in Fig. 10 have values about 20 % higher than the remaining compounds at the same temperature. It was also found that for triatomic compounds the fluorides had ΔS_{v}° values about 10-25 % higher than the other halides at comparable temperatures. From Fig. 12 it is seen that HCF₃ at T = 191 K has a value above the curves for both hydrides and halides. Thus, the $\Delta H_{\rm v}^{\circ}$ values for the fluorides in Table 10 were predicted using the formula $\Delta H_v^{\circ} = 104 T \exp(-27/T)$.

Fig. 11. Heats of vaporization $\Delta H_{\rm v}^{\circ}$ (kJ mol⁻¹) for penta-atomic compounds at the normal boiling pont T (K). The broken curve corresponds to Trouton's rule.

Table 9. Entropy of vaporization ΔS_{v}° (J mol⁻¹ K⁻¹) for penta-atomic compounds at the normal boiling point T.

			Asymmetric molecules			Hydrides		
	T/K	ΔS_{v}°		T/K	ΔS_{v}°		T/K	ΔS°
CCI ₄	350	86	H₃CBr	277	86	CH₄	112	73
SiCl₄	331	87	H ₃ CCI	249	87	SiH₄	161	77
SiBr₄	427	89	H₃CI	316	86	GeH₄	185	82
GeCl₄	356	83	H ₂ CCl ₂	314	90	SnH₄	221	84
GeBr₄	460	78	HCCI ₃	334	89			
SnCl₄	388	88	HCF ₃	191	87			
SnBr₄	480	85	HSiCl ₃	307	87			
VCl₄	425	90	·					
TiBr₄	504	90						
TiCl₄	410	88						
TeCl₄	661	106						

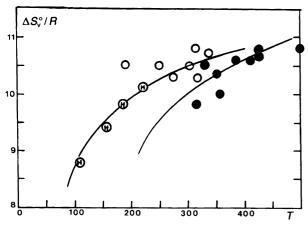


Fig. 12. Entropies of vaporization ΔS_v° for penta-atomic compounds at the normal boiling point T (K). The upper curve has the formula $\Delta S_v^\circ/R = 11.4 \exp(-27/T)$, while the lower curve has the formula $\Delta S_v^\circ/R = 12.7 \exp(-72/T)$. The points correspond to XH₄ compounds (H), XY₄ compounds (O), and assymmetrical molecules (\blacksquare) containing both hydrogen and halogen.

For the compounds in Table 10 only boiling points were recorded. The predicted values were estimated using the parameters established for halides and hydrides, as explained above.

Conclusions

It has been demonstrated that the entropy of vaporization, at the normal boiling point, may be estimated from a simple formula involving two emprical constants and the value of the boiling point itself. The parameters $(A \text{ and } \Theta)$ have characteristic values for a family of structurally related compounds. It has also been shown that the entropies of vaporization of the monoatomic elements follow the same empirical formula, with different parameter values. Boiling points of the actinides beyond the element Am have not

been recorded. However, a correlation between boiling points and heats of vaporization has been suggested here.

Using available data for 99 inorganic compounds, the missing entropies and heats of vaporization for an additional 56 compounds have been predicted at the normal boiling point. Expected uncertainties in the estimated values are typically 5–10%, but there exist large deviations from the expected normal value within a family of compounds. For the compounds considered here hydrogen bonds do not exist between the molecules. However, consider the three vaporization processes (1)–(3) consuming one mole of liquid.

$$A(liq) \rightarrow A(gas)$$
 ΔS_1° (1)

$$A_x(\text{liq}) \to xA(\text{gas})$$
 ΔS_2° (2)

$$A(liq) \rightarrow \frac{1}{r} A_x(gas)$$
 ΔS_3° (3)

For the vaporization/dissociation process it is expected that $\Delta S_2^{\circ} \simeq \Delta S_1^{\circ} + \Delta S^{\circ}$ (diss.), while for the vaporization/association process it is likely that $\Delta S_3^{\circ} \simeq \Delta S_1^{\circ} - \frac{1}{r} \Delta S^{\circ}$ (diss.). Thus, the entropy of vaporization may become greater than the normal value ΔS_1° if the liquid-phase molecules show a greater tendency for association than the gas-phase molecules. On the other hand, if the gas-phase molecules have a greater tendency for association the entropy of vaporization may become smaller than the normal value. Possibly such effects lead to the exceptionally large ΔS_{v}° values observed for BeY₂ compounds. For BeCl₂ the experimental value is 15.6R, which is about 30 % greater than the expected value for an XY₂ chloride (Table 5). BeCl₂ has an unusual chain structure that is also likely to exist partly in the liquid.³ In the gas phase BeCl₂ tends to form a bridged sp² dimer, and dissociation to the linear monomer is not complete below about 900 K. Thus, a greater tendency to associate exists in the liquid phase for BeCl₂. Also BeF₂, BeBr₂ and BeI₂ have very large ΔS_v° values, and probably

Table 10. Heats of vaporization ΔH_{v}° (kJ mol⁻¹) for penta-atomic compounds at the normal boiling point T.

			Hydrides			Fluorides		
	T/K	ΔH°		T/K	$\Delta H_{ m v}^{\circ}$		T/K	ΔH _v °
CBr₄	463	42	H₂CBrCl	342	30	H ₂ CF ₂	222	20
Sila	561	52	H ₂ CBrl	413	38	HČF ₂ Ī	295	28
Gel₄	621	59	H₂CCII	382	34	HCFÎ₂	374	36
Snl₄	638	60	H ₂ CBr ₂	338	30	H₂CFĪ	327	31
Til ₄	653	62	H₃SiCl	243	21	HCFBr ₂	338	33
SiBrCl ₃	354	31	H ₂ SiCl ₂	282	24	H₂CBrF	292	28
SiBr ₂ Cl ₂	377	33	H₃SiBr	275	24	H ₂ CCIF	264	25
SiBr ₃ Cl	400	35	H ₂ SiBr ₂	339	30	-		
SiCl ₃ I	387	34	HSiBr ₃	382	34			
CBrCl₃	377	33	H₃Sil	319	28			
CBr₃Cl	432	39	HŠil₃	493	44			
	408	36	HCČl ₂ I	405	36			
CCI ₃ I	415	37	HCBr ₃	423	39			

these compounds have a greater tendency to associate in the liquid phase than in the vapour. It is known³ that BeF₂ is monomeric in the vapour.

The largest deviation from the expected ΔS_v° value was detected for SnBr₂. Here the experimental value is 18.3R, while only 12R is expected for a typical XBr₂ compound. It is known that the crystal structure of SnF₂ is composed of Sn₂F₄ tetramers.⁴ Unfortunately, the ΔS_v° value of SnF₂ is not known. The observed ΔS_v° value of SnCl₂ is 17% greater than the expected value, while for SnI₂ the observed ΔS_v° value is 15% lower than expected for XY₂ compounds (Tables 4 and 5).

Considering large positive deviations from the normal ΔS_v° values, the following compounds are probably more associated (dimers?) in the liquid phase than in the vapour: AgBr, SnBr₂, BeY₂ (Y = F,Cl,Br,I), CdI₂, PbI₂, SnI₂, CaCl₂, CrCl₂, ZnCl₂, ZrCl₂, PClF₂, BF₃ and SbBr₃.

Considering large negative deviations from the normal ΔS_v° values, the following compounds are probably more associated (dimers?) in the vapour than in the liquid phase: CsCl, LiI, AgI, ZrBr₂, MnBr₂, SrBr₂, BaI₂, FeI₂, FeCl₂, PbF₂, MgCl₂ and SnCl₂. It is known that CsCl, MnBr₂ and FeCl₂ exist partly as dimers in the vapour.

Several other methods have been suggested for estimating the entropy of vaporization⁵⁻⁷ at the normal boiling point. However, in addition to the value of the boiling point, both the critical pressure and the critical temperature must be known for each compound.

If the critical parameters are not known, the entropy-of-vaporization rule of Kistiakowsky, $^8\Delta S_v^\circ/R=4.40+\ln(T/K)$, may be used. Fistine⁹ improved the accuracy of this equation by employing a multiplicative correction factor that is a function of the compound's class. The various methods have been presented by Reid *et al.* ¹⁰

Our method offers an independent estimate of the entropy of vaporization not suggested earlier.

References

- 1. Stølevik, R. Acta Chem. Scand. 43 (1989) 758.
- J. A. Dean, Ed., Lange's Handbook of Chemistry, 13th ed., McGraw-Hill, New York 1985, pp. 9-107.
- Greenwood, N. N. and Earnshaw, A. Chemistry of the Elements, Pergamon Press, Oxford 1984, p. 128.
- McDonald, R. C., Ho-Kuen Hau, H. and Eriks, K. Inorg. Chem. 15 (1976) 762.
- 5. Giacalone, A. Gazz. Chim. Ital. 81 (1951) 180.
- 6. Riedel, L. Chem. Ing. Tech. 26 (1954) 679.
- 7. Chen, N. H. J. Chem. Eng. Data 10 (1965) 207.
- 8. Kistiakowsky, W. Z. Phys. Chem. 107 (1923) 65.
- 9. Bondi, A. J. Chem. Eng. Data 8 (1963) 371.
- Reid, R. C., Prausnitz, J. M. and Sherwood, T. K. The Properties of Gases and Liquids, 3rd. ed., McGraw-Hill, New York 1977, pp. 181-222.

Received March 13, 1989.