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Liver mitochondria take up Ca?* by the Ca’* uniporter, whereas at steady state
efflux is believed to occur mainly by means of a ruthenium red-insensitive
Ca?*/2H" antiporter. The latter activity was studied in respiration-inhibited mi-
tochondria in the presence of ruthenium red and was measured as Ca’* uptake
following acidification of the matrix by addition of nigericin, which catalyzes
K*/H* exchange. Ca’" uptake was stimulated by protonophorous uncoupling
agents and inhibited by increasing the concentration of ruthenium red. However,
the rates were always smaller than those obtained by addition of valinomycin in-
stead of nigericin. This indicates that under these conditions, Ca?* fluxes are not

mediated by a Ca?*/2H"* antiporter but by residual uniporter activity.

The distribution of Ca?* between the matrix and
extramitochondrial spaces is generally believed
to be determined by the rates of influx through
the Ca** uniporter and efflux by various path-
ways.' Of these, the Ca’*/Na* antiporter is of mi-
nor importance in liver mitochondria® where an
electroneutral Ca**/2H* antiporter may be in-
volved.* Evidence in favour of such a putative
carrier is efflux of accumulated Ca’* on acid-
ification of the medium**® and influx of Ca** in re-
sponse to acidification of the matrix of non-re-
spiring mitochondria whose uniporter activity has
been inhibited with ruthenium red.®’ The former
approach has been criticized on the ground that
Ca’* efflux at the uniporter is not readily inhib-
ited by ruthenium red, which makes it difficult to
rule out this pathway.® Lowering of the pH may
lead to release of Ca** from poorly coupled mi-
tochondria in a heterogeneous population.® Fur-
thermore, varying Ca?*/H* stoichiometries at dif-

*Abbreviations: AW, mitochondrial inner membrane
transmembrane potential, negative inside; EGTA, et-
hyleneglycol-O, O’-bis(2-aminoethylether)-N,N,N',N'-
tetraacetic acid; FCCP, mesoxalonitrile 4-trifluorome-
thoxyphenylhydrazone; Hepes, 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid; Mops, 4-morpholine-
propanesulfonic acid. ;

6* Acta Chemica Scandinavica B41 (1987) 79-82

ferent pH values were found during H*-induced
Ca’* release.® In the latter approach, the matrix
can be acidified by addition of nigericin or diane-
mycin to mitochondria suspended in a low K*
medium, since these ionophores catalyze an elec-
troneutral K*~H* exchange. The activity of the
uniporter can then be more effectively inhibited
with ruthenium red. This approach has also led to
controversial results. Thus, Bernardi and Az-
zone’ found negligible ruthenium red-insensitive
uptake of Ca’* under these conditions, which had
been attributed by Cockrell’ to inhibition of the
putative antiporter activity by Mops*, the buffer
used. This question was reexamined and negli-
gible nigericin-induced uptake of Ca®* by rat liver
mitochondria found using the medium of Cock-
rell,” where the mitochondrial respiration and
uniporter activity were completely inhibited.

Experimental

Materials. Most inhibitors and bovine serum al-
bumin (fraction V) were obtained from Sigma,
St. Louis, MO. Ruthenium red was from BDH
Ltd., Poole, UK, antimycin A from Boehringer—
Mannheim, FRG, safranine from E. Merck,
Darmstadt, FRG, arsenazo III from Fluka AG,
Buchs, Switz. and Chelex® 100 from Bio-Rad
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Laboratories. FCCP was a kind gift from Dr.
P. G. Heytler, E. I. DuPont de Nemours and Co.,
Wilmington, DE.

Rat liver mitochondria were prepared by a
conventional procedure and depleted of endo-
genous Ca”* by incubation at 20 °C for 10 min at a
concentration of 5 mg protein/ml in 210 mM man-
nitol, 70 mM sucrose, 10 mM Hepes-chloride
(pH 7.3) and 1 pg each of oligomycin and ro-
tenone/mg protein. They were then harvested by
centrifugation, resuspended to a concentration of
40 mg protein/ml in 250 mM sucrose, 10 mM
Hepes-chloride (pH 7.2) (depleted of Ca®* by
passing through a Chelex 100 column) and kept
in an ice-bath until used. Ruthenium red and ar-
senazo IIl were purified as in Refs. 10 and 11.

Incubations were carried out at 3 mg pro-
tein/ml at 23°C in the sucrose medium supple-
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Fig. 1. Nigericin- and valinomycin-induced uptake of
Ca?* in de-energized mitochondria. For experimental
details, see Experimental. Upward deflection
indicates Ca?* uptake. Additions: 100 nM FCCP; at
arrow VAL, 100 nM valinomycin or NIG, 8 pM
nigericin. (A) 1 uM ruthenium red present; (B) 14 uM
ruthenium red present.

mented with 0.5 pug antimycin/ml, 2 uM rotenone,
2 ng oligomycin/ml and 1 mg bovine serum al-
bumin/ml, unless otherwise indicated. Other de-
tails are given in the figure legends. Ca>* uptake
was followed by adding 50 pM arsenazo III and
measuring the absorbance change at the wave-
lengths 685 and 665 nm.!! Establishment of AW
was monitored at 554-524 nm by the safranine
technique.'? Protein was estimated by a biuret
technique using bovine serum albumin as stan-
dard.

Results and discussion

In studies of the putative Ca**/2H" carrier by in-
ducing efflux of accumulated Ca** by an external
acid pulse’® rather high Ca** loads were used,

Table 1. Ruthenium red-sensitivity of valinomycin and nigericin-induced Ca?* uptake.

Ruthenium red Valinomycin-induced uptake

Nigericin-induced uptake

Concentration

(uM) Uptake Inhibition Uptake Inhibition
[pmol/(mg X s)] (%) [pmol/(mg X s)] (%)
0 20500 18.5
1 290 98.6 14.5 21
4 54 99.7 6.5 65
10 19 99.9 5.0 73
14 7.8 99.96 2.8 85
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>60 nmol/mg protein. The release of Ca** may
be due to the increased permeability induced by a
Ca’* overload in a part of the heterogeneous mi-
tochondrial population.”® Indeed, at loads >40
nmol Ca?*/mg protein, EGTA induces a fast ef-
flux of part of the accumulated Ca?*."* Ca?* ef-
flux through the uniporter is not sensitive to inhi-
bition by ruthenium red and cannot be ruled out.
Therefore, the other approach to inducing an
artificial H* gradient, i.e. more acid inside so as
to drive Ca’* uptake by the putative carrier’® in
the presence of ruthenium red to inhibit the Ca**
uniporter, was used. The Ca?* load was also kept
smaller and antimycin was used to completely
block endogenous respiration that might other-
wise extrude protons and induce the establish-
ment of AW. Nigericin was used to exchange ma-
trix K* for H* from the medium.

Fig. 1A shows the nigericin-induced uptake of
Ca**. The uptake is stimulated by FCCP, which
may seem unexpected since FCCP should equili-
brate the H* gradient formed (see below). Fis-
kum and Cockrell® also used an uncoupler in or-
der to de-energize the mitochondria. Ca?* influx
was also induced by addition of valinomycin in-
stead of nigericin. Valinomycin creates an artifi-
cial K* diffusion potential that can be used to
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Fig. 2. Changes in AW induced by FCCP and the
ionophores. Experimental conditions were as in Fig.
1A but 10 uM safranine was used as the probe, as
described in Experimental.
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Fig. 3. lonophore-stimulated Ca®* uptake in
hypotonic media. Osmolarity was varied by varying
the concentration of sucrose in the medium. 2.5 mg
mitochondrial protein/ml; 10 uM ruthenium red;
ionophore concentrations as in Fig. 1.

drive Ca’* uptake via the uniporter.'® Increasing
the concentration of ruthenium red decreased the
rates of Ca?* uptake to very low levels (Fig. 1B
and Table 1). The capacity of the uniporter is or-
ders of magnitude larger than that of electro-
neutral pathways. Under the present conditions,
the rates in the absence of ruthenium red were
>1000-fold higher when induced by valinomycin
than when nigericin was used. Ruthenium red
progressively inhibited both the valinomycin- and
the nigericin-induced Ca®* uptake. Although in-
hibition of the valinomycin-induced uptake ap-
proached 100 %, the remaining flux still ex-
ceeded the corresponding nigericin-induced flux.
There is thus no indication of a Ca?*/2H* antipor-
ter. The antiporter could catalyze an uptake un-
der these conditions of <3 pmol Ca** mg™"' s,
which corresponds to the rate of ruthenium red-
insensititive Ca?* uptake of <0.1 nmol mg™!
min~' reported by Bernardi and Azzone.’ The
higher rates reported by Cockrell’ may have been
due to use of less ruthenium red, 4 uM, and in-
completely respiration-inhibited mitochondria.
Since in other respects a medium identical to that
used by Cockrell” was used in this study, it is un-
likely that the discrepancy is due to inhibition of
antiporter activity by Mops as suggested by Cock-
rell.”

Addition of nigericin generated a safranine sig-
nal that was smaller and formed more slowly than
that induced by valinomycin (Fig.2). The re-
sponse to nigericin was potentiated by FCCP.
Under these conditions with high H* activity in
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the matrix, FCCP induces an H* diffusion poten-
tial of the same polarity as the K* diffusion po-
tential induced by valinomycin.'? It seems likely
that the safranine signal recorded on addition of
nigericin in the absence of FCCP also reflects the
establishmeht of such a potential, although the
signal could also result from stacking of safranine
molecules to additional binding sites on the ma-
trix side of the inner membrane.

The data support the interpretation that the ni-
gericin-induced uptake of Ca?* occurs on the uni-
porter that is not completely inhibited by ruthe-
nium red and that the differences in influx rates
(Fig. 1A) are mainly due to differences in AW.
Ca’* uptake may also be driven by the difference
in Ca®* activity between the medium and the ma-
trix, where competition with K* for anionic bind-
ing sites is diminished both when valinomycin
and nigericin are used. FCCP may stimulate up-
take not only by inducing a AW but also by mak-
ing additional Ca®* binding sites available.

Swelling of mitochondria, either by suspension
in hypotonic media under respiratory conditions
or in the presence of nitrate under non-energized
conditions, has been shown to stimulate Ca?*/H*
exchange or other Ca** efflux pathways.'>'¢ Sus-
tained oscillatory volume changes of respiring rat
liver mitochondria are also observed under hy-
poosmotic conditions in the presence of Sr** and
permeant anions,'” and may be due to induction
of Sr**/H* exchange when the inner membrane is
stretched during swelling induced by uptake of
cation salt.”™® Therefore, the possibility that
Ca®/2H" antiporter activity could be stimulated
by membrane-stretching was also tested (Fig. 3).
Suspending mitochondria in media with lowered
sucrose content decreased the rates of both the
nigericin- and the valinomycin-induced uptake of
Ca®*. Although these rates were close, those in-
duced by valinomycin were always higher than
those induced by nigericin. There was thus no
evidence for the induction of antiporter activity
by membrane-stretching in non-respiring mito-
chondria.

The present finding that there is no demon-
strable direct coupling between Ca?* and H*
fluxes in non-respiring mitochondria leaves unre-
solved the question of the mechanism by which
efflux of Ca’* and influx of H* are coupled in re-
spiring mitochondria. Gunter et al.® found no in-
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crease in the rate of Ca’* efflux with increase in
matrix pH and varying Ca**/H* stoichiometries,
which is not easily reconciled with the operation
of a Ca’*/2H* antiporter. Coupling might be indi-
rect via symport of Ca** with anions whose fluxes
are coupled to those of H*. Ca®* and H* fluxes
may also be associated with a redistribution of
charged membrane components such as free fatty
acids or acidic phospholipids.
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