Non-respiring Rat Liver Mitochondria Do Not Have a Ca2+/2H+ Antiporter

Nils-Erik L. Saris

Department of Medical Chemistry, University of Helsinki, Siltavuorenpenker 10, SF-00170 Helsinki, Finland

Liver mitochondria take up Ca2+ by the Ca2+ uniporter, whereas at steady state efflux is believed to occur mainly by means of a ruthenium red-insensitive Ca2+/2H+ antiporter. The latter activity was studied in respiration-inhibited mitochondria in the presence of ruthenium red and was measured as Ca2+ uptake following acidification of the matrix by addition of nigericin, which catalyzes K+/H+ exchange. Ca2+ uptake was stimulated by protonophorous uncoupling agents and inhibited by increasing the concentration of ruthenium red. However, the rates were always smaller than those obtained by addition of valinomycin instead of nigericin. This indicates that under these conditions, Ca2+ fluxes are not mediated by a Ca2+/2H+ antiporter but by residual uniporter activity.

The distribution of Ca2+ between the matrix and extramitochondrial spaces is generally believed to be determined by the rates of influx through the Ca2+ uniporter and efflux by various pathways.1 Of these, the Ca2+/Na+ antiporter is of minor importance in liver mitochondria2 where an electroneutral Ca2+/2H+ antiporter may be involved.3 Evidence in favour of such a putative carrier is efflux of accumulated Ca2+ on acidification of the medium4,5 and influx of Ca2+ in response to acidification of the matrix of non-respiring mitochondria whose uniporter activity has been inhibited with ruthenium red.6,7 The former approach has been criticized on the ground that Ca2+ efflux at the uniporter is not readily inhibited by ruthenium red, which makes it difficult to rule out this pathway.8 Lowering of the pH may lead to release of Ca2+ from poorly coupled mitochondria in a heterogeneous population.8 Furthermore, varying Ca2+/H+ stoichiometries at different pH values were found during H+-induced Ca2+ release.9 In the latter approach, the matrix can be acidified by addition of nigericin or dienemycin to mitochondria suspended in a low K+ medium, since these ionophores catalyze an electroneutral K+/H+ exchange. The activity of the uniporter can then be more effectively inhibited with ruthenium red. This approach has also led to controversial results. Thus, Bernardi and Azzone9 found negligible ruthenium red-insensitive uptake of Ca2+ under these conditions, which had been attributed by Cockrell7 to inhibition of the putative antiporter activity by Mops*, the buffer used. This question was reexamined and negligible nigericin-induced uptake of Ca2+ by rat liver mitochondria found using the medium of Cockrell,7 where the mitochondrial respiration and uniporter activity were completely inhibited.

Experimental

Materials. Most inhibitors and bovine serum albumin (fraction V) were obtained from Sigma, St. Louis, MO. Ruthenium red was from BDH Ltd., Poole, UK, antimycin A from Boehringer–Mannheim, FRG, safranine from E. Merck, Darmstadt, FRG, arsenazo III from Fluka AG, Buchs, Switz. and Chelex® 100 from Bio-Rad
Laboratories. FCCP was a kind gift from Dr. P.G. Heytler, E.I. DuPont de Nemours and Co., Wilmington, DE.

Rat liver mitochondria were prepared by a conventional procedure and depleted of endogenous Ca\(^{2+}\) by incubation at 20°C for 10 min at a concentration of 5 mg protein/ml in 210 mM mannitol, 70 mM sucrose, 10 mM Hepes-chloride (pH 7.3) and 1 µg each of oligomycin and rotenone/mg protein. They were then harvested by centrifugation, resuspended to a concentration of 40 mg protein/ml in 250 mM sucrose, 10 mM Hepes-chloride (pH 7.2) (depleted of Ca\(^{2+}\) by passing through a Chelex 100 column) and kept in an ice-bath until used. Ruthenium red and arsenazo III were purified as in Refs. 10 and 11.

Incubations were carried out at 3 mg protein/ml at 23°C in the sucrose medium supplemented with 0.5 µg antimycin/ml, 2 µM rotenone, 2 µg oligomycin/ml and 1 mg bovine serum albumin/ml, unless otherwise indicated. Other details are given in the figure legends. Ca\(^{2+}\) uptake was followed by adding 50 µM arsenazo III and measuring the absorbance change at the wavelengths 685 and 665 nm. Establishment of ΔΨ was monitored at 554–524 nm by the safranine technique. Protein was estimated by a biuret technique using bovine serum albumin as standard.

Results and discussion

In studies of the putative Ca\(^{2+}/2H^+\) carrier by inducing efflux of accumulated Ca\(^{2+}\) by an external acid pulse\(^{4,5}\) rather high Ca\(^{2+}\) loads were used,

<table>
<thead>
<tr>
<th>Ruthenium red Concentration (µM)</th>
<th>Valinomycin-induced uptake</th>
<th>Nigericin-induced uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uptake [pmol/(mg x s)]</td>
<td>Inhibition (%)</td>
</tr>
<tr>
<td>0</td>
<td>20 500</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>290</td>
<td>98.6</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>99.7</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>99.9</td>
</tr>
<tr>
<td>14</td>
<td>7.8</td>
<td>99.96</td>
</tr>
</tbody>
</table>
>60 nmol/mg protein. The release of Ca\(^{2+}\) may be due to the increased permeability induced by a Ca\(^{2+}\) overload in a part of the heterogeneous mitochondrial population.\(^{13}\) Indeed, at loads >40 nmol Ca\(^{2+}\)/mg protein, EGTA induces a fast efflux of part of the accumulated Ca\(^{2+}\).\(^{14}\) Ca\(^{2+}\) efflux through the uniporter is not sensitive to inhibition by ruthenium red and cannot be ruled out. Therefore, the other approach to inducing an artificial H\(^{+}\) gradient, i.e. more acid inside so as to drive Ca\(^{2+}\) uptake by the putative carrier\(^{5,6}\) in the presence of ruthenium red to inhibit the Ca\(^{2+}\) uniporter, was used. The Ca\(^{2+}\) load was also kept smaller and antimycin was used to completely block endogenous respiration that might otherwise extrude protons and induce the establishment of ΔΨ. Nigericin was used to exchange matrix K\(^{+}\) for H\(^{+}\) from the medium.

Fig. 1A shows the nigericin-induced uptake of Ca\(^{2+}\). The uptake is stimulated by FCCP, which may seem unexpected since FCCP should equilibrate the H\(^{+}\) gradient formed (see below). Fiskum and Cockrell\(^{6}\) also used an uncoupler in order to de-energize the mitochondria. Ca\(^{2+}\) influx was also induced by addition of valinomycin instead of nigericin. Valinomycin creates an artificial K\(^{+}\) diffusion potential that can be used to drive Ca\(^{2+}\) uptake via the uniporter.\(^{13}\) Increasing the concentration of ruthenium red decreased the rates of Ca\(^{2+}\) uptake to very low levels (Fig. 1B and Table 1). The capacity of the uniporter is orders of magnitude larger than that of electro-neutral pathways. Under the present conditions, the rates in the absence of ruthenium red were >1000-fold higher when induced by valinomycin than when nigericin was used. Ruthenium red progressively inhibited both the valinomycin- and the nigericin-induced Ca\(^{2+}\) uptake. Although inhibition of the valinomycin-induced uptake approached 100%, the remaining flux still exceeded the corresponding nigericin-induced flux. There is thus no indication of a Ca\(^{2+}/2H^{+}\) antiporter. The antiporter could catalyze an uptake under these conditions of <3 pmol Ca\(^{2+}\)/mg \(s^{-1}\), which corresponds to the rate of ruthenium red-insensitive Ca\(^{2+}\) uptake of <0.1 nmol mg\(^{-1}\) min\(^{-1}\) reported by Bernardi and Azzone.\(^{9}\) The higher rates reported by Cockrell\(^{7}\) may have been due to use of less ruthenium red, 4 \(\mu\)M, and incompletely respiration-inhibited mitochondria. Since in other respects a medium identical to that used by Cockrell\(^{7}\) was used in this study, it is unlikely that the discrepancy is due to inhibition of antiporter activity by Mops as suggested by Cockrell.\(^{7}\)

Addition of nigericin generated a safranine signal that was smaller and formed more slowly than that induced by valinomycin (Fig 2). The response to nigericin was potentiated by FCCP. Under these conditions with high H\(^{+}\) activity in
the matrix, FCCP induces an H\(^+\) diffusion potential of the same polarity as the K\(^+\) diffusion potential induced by valinomycin.\(^2\) It seems likely that the safranine signal recorded on addition of nigericin in the absence of FCCP also reflects the establishment of such a potential, although the signal could also result from stacking of safranine molecules to additional binding sites on the matrix side of the inner membrane.

The data support the interpretation that the nigericin-induced uptake of Ca\(^{2+}\) occurs on the uniporter that is not completely inhibited by ruthenium red and that the differences in influx rates (Fig. 1A) are mainly due to differences in $\Delta \Psi$. Ca\(^{2+}\) uptake may also be driven by the difference in $\Delta \Psi$ activity between the medium and the matrix, where competition with K\(^+\) for anionic binding sites is diminished both when valinomycin and nigericin are used. FCCP may stimulate uptake not only by inducing a $\Delta \Psi$ but also by making additional Ca\(^{2+}\) binding sites available.

Swelling of mitochondria, either by suspension in hypotonic media under respiratory conditions or in the presence of nitrate under non-energized conditions, has been shown to stimulate Ca\(^{2+}/H^+\) exchange or other Ca\(^{2+}\) efflux pathways.\(^{15,16}\) Sustained oscillatory volume changes of respiring rat liver mitochondria are also observed under hypoosmotic conditions in the presence of Sr\(^{2+}\) and permeant anions,\(^17\) and may be due to induction of Sr\(^{2+}/H^+\) exchange when the inner membrane is stretched during swelling induced by uptake of cation salt.\(^{17,18}\) Therefore, the possibility that Ca\(^{2+}/H^+\) antipporter activity could be stimulated by membrane-stretching was also tested (Fig. 3). Squeezing mitochondria in media with lowered sucrose content decreased the rates of both the nigericin- and the valinomycin-induced uptake of Ca\(^{2+}\). Although these rates were close, those induced by valinomycin were always higher than those induced by nigericin. There was thus no evidence for the induction of antipporter activity by membrane-stretching in non-respiring mitochondria.

The present finding that there is no demonstrable direct coupling between Ca\(^{2+}\) and H\(^+\) fluxes in non-respiring mitochondria leaves unresolved the question of the mechanism by which efflux of Ca\(^{2+}\) and influx of H\(^+\) are coupled in respiring mitochondria. Gunter et al.\(^8\) found no increase in the rate of Ca\(^{2+}\) efflux with increase in matrix pH and varying Ca\(^{2+}/H^+\) stoichiometries, which is not easily reconciled with the operation of a Ca\(^{2+}/2H^+\) antiporter. Coupling might be indirect via sympport of Ca\(^{2+}\) with anions whose fluxes are coupled to those of H\(^+\). Ca\(^{2+}\) and H\(^+\) fluxes may also be associated with a redistribution of charged membrane components such as free fatty acids or acidic phospholipids.

Acknowledgements. This work was supported by a grant from the Finnish Society of Sciences and Letters. The skilful technical assistance of Ms. Kaija Niva is gratefully acknowledged.

References

Received July 2, 1986.