Letter

Efficient Synthesis of Mutagenic Imidazo[4,5-f]-quinoxalin-2-amines via Readily Accessible 2,1,3-Benzoselenadiazoles

Spiros Grivas

Department of Chemistry and Molecular Biology, Swedish University of Agricultural Sciences, P.O. Box 7015, S-750 07 Uppsala, Sweden

Mutagenic di- and trimethyl-3H-imidazo[4,5-f]-quinoxalin-2-amines (e.g., MeIQx and 7,8-DiMeIQx; 6 in Fig. 1) along with other mutagenic and/or carcinogenic heterocyclic amines have been isolated in small amounts from broiled fish and meat, pyrolysates of amino acids and proteins, and from model reaction mixtures consisting of creatinine, hexoses and amino acids.1-4 Some of these food mutagens are continuously desired in substantial quantities for toxicological studies and animal bioassay in various laboratories. To date, MeIQx and the related 3H-imidazo[4,5-f]quinolin-2-amines (IQ and MeIQ; 3 in Fig. 1) have been shown to develop carcinomas in rodents.5,7 Consequently, much attention is currently paid to these compounds as a possible cause of human cancers.7 The amount of MeIQx detected by LCEC (liquid chromatography with electrochemical detection)9 in one gram of food grade beef extract was 3.1 ng; no IQ could be detected. One gram of bacteriological grade beef extract was found to contain 41.6 ng of IQ and 58.7 ng of MeIQx.9

The modification of existing synthetic methods and the introduction of new more convenient ones to produce these potent mutagens is a continuous challenge. The direct replacement of the chlorine atom of 2 by a methylamino group10 is an obvious improvement of older methods to obtain IQ and MeIQ (3).11-13 The latter methods involved N-methylation in the last step of the synthetic sequence, which produced other methylated products in addition to the desired one. This was regrettable, especially when the 14C- or 13C-labelled analogues of 3 were required.

When the synthesis of MeIQx (6a) was attempted, 7-chloro-2-methylquinoxaline (4) was therefore considered as starting material.14 This would then be nitrated and subsequently treated with methylamine, reduced, and cyclized with cyanogen bromide by analogy with the route I→2→3. However, in contrast to the chloroquinolines (1) which could be easily nitrated to yield 2,10 the nitration of chloroquinolines (4) and their fluoro analogues was unsuccessful.14,14a Hence, 7-fluoro-2-methylquinoxaline was treated with methylamine under drastic conditions (steel autoclave, 16 h 170–180°C) resulting in the 6-methylaminoquinoxaline which could then be nitrated to produce 5a. The latter nitration is rather touchy and produces a considerable amount of tarry products. Moreover, nitration of the methylamino group and oxidation of the pyrazine methyl group has been observed.14a Again, 5a14 and 5b15 can be reduced and subsequently cyclized with cyanogen bromide to give MeIQx and 7,8-DiMeIQx.

In search of alternative routes to improve the synthesis of 5, and consequently of MeIQx and 7,8-DiMeIQx, 5-chloro-4-nitro-2,1,3-benzoselenadiazole (8)1b was investigated as possible starting material. Compound 8 was readily obtained
in high yield by treating 4-chloro-1,2-benzenediamine with selenium dioxide and subsequent nitration (H$_2$SO$_4$/HNO$_3$, 1 h, 0–20°C) of 7. Treatment of 8 with methylamine in refluxing ethanol (1 h) afforded 9. When 9 was treated with ethanolic ammonium sulfide followed by pyruvaldehyde or diacetyl, 5a or 5b was obtained. No reduction of the nitro group was observed. Alternatively, the selective reductive cleavage of nitro-2,1,3-benzoselenadiazoles (or -thiadiazoles and -furoxans) to otherwise difficult to obtain nitro-1,2-benzenediamines (e.g., 10) can be achieved by hydroiodic acid. Condensation of 10 with pyruvaldehyde produced almost exclusively the desired isomer 5a. This was probably because the reaction preferentially occurred through the most reactive groups, i.e., the amino group which is not conjugated with the nitro group, and the aldehyde group. In contrast, the condensation of 4-fluoro (or chloro)-1,2-benzenediamine with pyruvaldehyde yielded 20–25% of the undesired 6-halo-2-methylquinoxaline. The isomeric quinoxaline derivatives could be isolated only after treatment with methylamine and subsequent nitration (cf. 4→5). The yield of 5 from the commercially available 4-chloro-1,2-benzenediamine via 7 was 45–48%, while that of 4 was 21–23%.

N,3-di- and N,2,3-trimethyl-5-nitro-6-quinoxalinamine (5a and 5b, respectively) were identical to those synthesized by other methods. The same strategy has been successfully applied to the synthesis of the MeIQ homologues 4,8- and 5,8-DiMeIQx. Experimental details will soon be published.
ophiles in a Diels-Alder fashion constitute an alternative route to obtain quinoxalines. Synthons for poor Dienophiles (e.g., acetylene and its monosubstituted derivatives) have now been developed and can be used under ordinary laboratory conditions.22–25 Recently, the synthesis of a quinoxaline suspected as an antiallergic agent was achieved via the condensation of 2,1,3-benzo[4,5]selenadiazole with dimethyl acetylenedicarboxylate.26

Acknowledgments. I wish to thank Professor Kjell Olsson for his critical review of the manuscript and Professor Olof Theander for his kind interest.

Financial support through the Foundation for Promotion of Cancer Research, Tokyo, Japan, is gratefully acknowledged.

References

Received November 18, 1985.