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Countercurrent electrolysis in a thin porous
membrane can be used to separate ions of differ-
ent mobilities both in systems consisting of strong
electrolytes’** and weak electrolytes.* A special
multi-ion case, a binary electrolyte system with
trace ions,’ as well as the influence of the mem-
brane thickness® have also been studied. While
investigating the effect of the membrane thick-
ness on separation efficiency, it was noticed that
the rate of reaching the stationary state rapidly
decreased when the membrane was made
thicker. If the volume of the porous membrane is
small compared to the volume of the compart-
ment where the electrolytes are diffusing, it can
be assumed that the fluxes across the membrane
are stationary. In that case, the membrane is
called thin and the mathematical modelling of the
nonstationary state can be done rather easily;
likewise, in multicomponent electrolyte systems.
However, in practice, it is desirable to make the
volume of the compartment as small as possible
to avoid ohmic losses and obtain effective stirring
when using forced-flow convection. Further-
more, it is preferable to use as thick a membrane
as possible to increase separation efficiency. As a
result, the assumption of stationary fluxes across
the porous membrane fails.

In this paper, we first study the nonstationary
stage in countercurrent electrolysis both in binary
and ternary electrolyte systems in the case of a
thin porous membrane; the transient behaviour is
then studied in the case of a thick membrane
when the electrolyte system is binary and a solu-
tion in closed form can be obtained. This solution
makes it possible to evaluate the effect of the ex-
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perimental parameters on the attainment of sta-
tionary state across the membrane.

Countercurrent electrolysis in a porous
membrane

Consider a system consisting of two electrolyte
solutions (o and f) separated by a membrane
(M) (see Fig. 1). The membrane is assumed to be
of the wide pore type so that there is no specific
interaction between the membrane and the elec-
trolytes. The pressure difference determines the
rate at which the solution flows through the por-
ous membrane and the electromotive force and
the resistance of the electric circuit determine the
electric current. The electrolyte solutions in com-
partments a and {3 are kept homogeneous by stir-
ring. When cations are separated, the polarity of
the electric current is chosen as presented in the
figure. Anion exchange membranes (AM) are
used to separate the electrode compartments (E)
from compartments a and f§. The concentrations
(cf) in compartment B are kept constant by cir-
culating the electrolyte solution being studied so
rapidly that no essential changes in concentration
take place. The water (or electrolyte solution)
flowing into compartment a is denoted by V°.
Part of this flow passes out of the compartment as
the product stream V* while the rest flows as con-
vection through the porous membrane V¢ = V° —
Ve
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Fig. 1. Schematic drawing of the cell for
countercurrent electrolysis in a porous membrane (W
and V¥ are volumes of the compartments).

In countercurrent electrolysis in a porous
membrane, the ionic equivalent conductivities
determine the order in which the ions are separ-
ated.” This means that the ions with greater
equivalent conductance may be enriched from a
mixture of electrolytes, the faster moving ions
travelling more quickly against the convection V*.
In the case of a thin membrane, the mass balance
for cations (i) in the a compartment (Fig. 1) is
given by eqn. (1) where V* is the volume of the a
compartment, ¢ is the concentration of ioniin a
compartment, ¢ is time, ¢} is the concentration of i
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in V°, J,is the flux of cation i, and A is the surface
area of the porous membrane. Since the mem-
brane is thin, it can be assumed that a quasi-sta-
tionary state continuously exists in the mem-
brane.

In a binary electrolyte system, the flux J; in
eqn. (1) can be derived using the Nernst-Planck
equations for the stationary state. The result for a
1,1 electrolyte is eqn. (2)° where the subscript +
denotes the cation and the transport number ¢, is
defined by eqn. (2a).
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The diffusion coefficient D, for the salt is given
by eqn. (2b) where A, and A_ are the equivalent
conductivities of the cation and anion, respec-
tively and I is the electric current.
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It is convenient to define dimensionless con-
vection by

Vel

Ve =

)

Using eqns. (1) and (2), the mass balance can
now be written as eqn. (4); eqn. (5) is an ordinary
linear differential equation which can be easily
solved (see below).
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Considering eqn. (5), we can deduce that the
time needed to reach a steady state depends on
the volume of the compartment V¢, and the con-
vection, V*; the greater the convection the faster
the steady state is reached. When ¢3, V°, and 1
are set equal to zero, the same result as derived
earlier by Rastas ef al.” is obtained.

We want to point out that in a ternary electro-
lyte system, the solution of eqn. (1) is more prob-
lematic than in the binary case, since the trans-
port problem modelled by the Nernst-Planck
equations cannot be solved in closed form.5%" A
numerical solution is however obtainable by dis-
cretizing eqn. (1) with respect to time assuming
that J; is constant in each time interval (¢,). Then,
the solution of eqn. (1) is eqn. (6) where the
times ¢, and #, denote (K+1)# and K¢, respec-
tively. It should be noted that the parameters I,
A, V=, and c? are implicitly included in the fluxes

J, and J,.
Vu
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Until now we have assumed that the fluxes are
stationary in the membrane, but if the porous
membrane is thick enough, this assumption fails
and the flux in eqn. (1) must be calculated from
eqn. (7) where w* = V9/A.

dc, 1 . a
JJ,=—Dtd)r x=0+t“AF+c+w )
dc, %, dc, 0
aa  tar " ax ®
c,(x0)=¢c* 0=x=1 (8a)
c,(0)=¢c t>0 (8b)
c.(Lty=¢f >0 (8¢c)

Eqn. (7) is valid for the binary electrolyte case.
The concentration gradient dc,/dx|x = 0 refers to
the limiting value on the boundary of the a side
of the membrane. According to the Nernst-
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Planck equations, both D, and ¢, are independ-
ent of concentration (cf. eqns. (2a) and (2b)).
When the divergence of the equation corre-
sponding to eqn. (7) within the membrane is
taken (i.e. without the limiting value when x — 0)
eqn. (8) is obtained where we have assumed that
the liquid is incompressible (div w*=0). To ob-
tain ¢=c(x,t) we have to use properly chosen
boundary and initial values where ¢* and c? are
constant and / is the membrane thickness. Eqn.
(8) can now be solved, e.g., by using the Laplace
transformation. The solution in Laplace plane is
shown by eqn. (9) where é(x,s) is L-transformed
concentration and s is the Laplace variable. The
dependence of concentration on time can be ob-
tained by the inverse Laplace transformation.
Since the function to be transformed is meromor-
phic, the transformation can be done by search-
ing the poles, which in this case are simple, and
by applying Heaviside’s expansion theorem.
Thus, we have eqn. (10).
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Eqn. (10) can now be used to solve J, ac-
cording to eqn. (7) and the result obtained then
substituted into eqn. (1) to give the transient be-
haviour in the case of a thick membrane. The
procedure is straightforward but gives a com-
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plicated result. This result is not presented here
because the most important deductions can be
made by considering eqn. (10): the exponent
(w4D, + k’nD./l,) determines the time re-
quired to reach stationary flux assuming that the
volume of compartment o is large enough to
maintain a constant boundary concentration dur-
ing this time. As can be seen, the increase of the
convection w* rapidly decreases the time needed
for reaching stationary fluxes (note square of w*).
The second term, k’nD, /P, is related to pure dif-
fusion and increases rapidly with larger k. The
above behaviour of the serial terms leads to the
necessity of taking only a few terms into account
in the solution. Furthermore, the higher the con-
vection the faster stationary flux is reached. In
practice, only the first term, (w)/4D, + nD,/P,
needs to be considered in order to get an idea of
how rapidly stationary flux is attained. After sta-
tionary flux has been reached, the same pro-
cedure as used for the thin membrane can be uti-
lized provided that V* is large enough. If this is
not the case, eqn. (1) with eqns. (7) and (10) has
to be used.
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