Stable Glucopyranosylpalladium Complexes with cis-β-Hydrogen. A Six-Membered Ring Metallocycle with an Oxygen Donor Ligand

ULI HACKSELL, a,* HENRY T. KALINKOSKI, a,b DOUGLAS F. BAROFSKY b and G. DOYLE DAVES, Jr. a

a Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA and b Department of Biological, Chemical and Environmental Sciences, Oregon Graduate Center, Beaverton, Oregon 97006, USA.

Two stable glucopyranosylpalladium complexes, chloro[1,3-dimethyl-5-(3,4,6-tri-O-acetyl-2-deoxy-α-D-arabinohexopyranosyl)-2,4(1H,3H)-pyrimidinedionato] (triphenylphosphine)palladium and the corresponding triphenylarsine analog, were studied using fast atom bombardment mass spectrometry, 1H, 13C and 31P nuclear magnetic resonance, UV and IR spectroscopy to establish structures for these complexes. The data obtained indicate that the pyranosyl ring is in a chair conformation in which palladium (C2), acetoxy (C3, C4) and acetoxyethyl (C5) are equatorial and 1,3-dimethyl-2,4(1H,3H) pyrimidinedion-5-yl (C1) is axial. The palladium(II) ion is encompassed in a six-membered ring metallocycle in which C2 of the glucopyranosyl ring and the oxygen of the C4 carbonyl of the pyrimidinedionyl group occupy adjacent ligand sites. The other two ligand sites on square planar palladium are occupied by triphenylphosphine (or triphenylarsine) cis to C2 and trans to carbonyl oxygen, and chloride trans to C2 and cis to oxygen. This stable metallocycle has three unusual features, a cis-β-hydrogen, a six-membered Pd-containing ring and an oxygen donor ligand. Its surprising stability is due to conformational barriers to the proper alignment of Pd with pyranosyl ring substituents required for elimination reactions.

Only a few alkylpalladium compounds which possess a cis-β-hydrogen have been isolated.1–3 We have reported 4 the isolation, characterization and some selective reactions of a stable glucopyranosylpalladium compound (I), which possesses a β-hydrogen cis to palladium. That compound I is sufficiently stable to permit isolation and purification** is impressive since, in addition to decomposition by β-hydride elimination5–9 compound I exhibits two other facile decomposition reactions – anti elimination of palladium acetate and pyran ring opening (i.e. anti elimination of palladium alkoxide).4–8,10 The structural features which account for the unexpected stability of I were not elucidated. We now report a more detailed study of the physical and chemical properties of organopalladium compound

* Present address: Department of Organic Pharmaceutical Chemistry, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden
** Attempts to prepare crystals of I for X-ray crystallography have been unsuccessful.
Experimental

General Comments. Chemicals were used as received. For flash chromatography, silica gel 60 (230–400 mesh ASTM, E. Merck) was used. Columns were eluted using a positive nitrogen pressure. Nuclear magnetic resonance (NMR) spectra were obtained on a JEOL FX 90Q spectrometer from degassed samples kept under nitrogen. 1H and 13C NMR spectra were referenced to tetramethylsilane. 31P NMR spectra were referenced to phosphoric acid. Infrared (IR) spectra were recorded on a Perkin-Elmer Model 283 spectrophotometer. Ultraviolet (UV) spectra were obtained with Cary-15 and perkin-Elmer Lambda 3 spectrophotometers. Mass spectra were obtained using a CEC (DuPont) 21–110 mass spectrometer modified for operation in the fast atom bombardment mode. Microanalysis and molecular weight determinations were performed by Galbraith Laboratories, Knoxville, TN, USA.

Chloro [1,3-dimethyl-5-(3,4,6-tri-0-acetyl-2-deoxy-α-D-arabinohexopyranosyl)-2,4(1H, 3H)-pyrimidinedione](triphenylphosphine)palladium (I). 1H, 13C, 31P, NMR spectral data for 1a-b are summarized below.

1H NMR (89.55 MHz, CDCl$_3$): δ 1.59, 1.77, 1.79 (OAc's); 2.07 (dt, $J_{1,2}$ = 5 Hz, H$_x$); 2.27 (tt, $J_{4,5}$ = 12 Hz, H$_y$); 2.67 (d, $J_{5,6}$ = 10.5 Hz, H$_z$); 3.35 (m, H$_A$); 4.21 (s, H$_D$); 4.83 (t, J_{10} = 10 Hz, H$_E$); 4.94 (s, H$_F$); 5.33 (s, H$_G$). 13C NMR (22.51 MHz, CDCl$_3$): δ 20.36, 20.50, 20.58 (OAc's); 29.75 38.04 (NMe's); 36.74, 1J$_{C_1-P}$ = 2.5 Hz (C$_1$); 63.12 (C$_2$); 69.41, 72.44, 72.87, 74.01 (C$_3$, C$_4$, C$_5$, C$_6$); 107.28 (C$_7$); 146.29 (C$_8$); 149.69 (C$_9$); 166.76 (C$_A$); 169.50, 169.90, 170.33 (OAc CO's); (triphenylphosphine resonances are omitted). 31P NMR (36.21 MHz, CDCl$_3$): δ 39.94 (s).

Fig. 1. Fast atom bombardment mass spectra of chloro [1,3-dimethyl-5-(3,4,6-tri-O-acetyl-2-deoxy-α-D-arabinohexopyranosyl)-2,4-(1H,3H)-pyrimidinedionnato] (triphenylphosphine) palladium (Ia, top) and the corresponding triphenylarsine analog (2a, bottom).
Anal. calc. for C\textsubscript{36}H\textsubscript{38}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{9}Pd: C, 53.0; H, 4.70; N, 3.44; Pd, 13.0. Found: C, 53.1; H, 4.76; N, 3.58; Pd, 12.8. Mol. Weight calc. 816. Found 826 (osmometry in benzene).

Chloro [1,3-dimethyl-5-(3,4,6-tri-O-acetyl-2-deoxy-α-D-arabinohexopyranosyl)-2,4-(IH,3H) pyrimidinediennato] (triphenylnarsine)-palladium (2a). The procedure for the preparation of 1a was followed except that triphenylnarsine was used instead of triphenylphosphine: yield, 43%. Compound 2a proved less stable than 1a and could not be freed completely from excess triphenylnarsine. 1H NMR (85.55 MHz, CDCl\textsubscript{3}/C\textsubscript{6}D\textsubscript{6}, 1:1): \(\delta\) 1.58, 1.78, 1.81 (OAc's); 2.32 (dd, \(J_{2',3'}=12\) Hz, \(J_{1',2'}=5\) Hz, \(H_2\)); 2.92, 3.42 (NMe's); 3.30–3.55 (m, partially obscured, \(H_3\)); 3.94 (d, \(J=5\) Hz, \(H_6,\,\,\varepsilon\)); 4.52 (t, \(J=10\) Hz, \(H_4\)); 4.75–5.05 (m, \(H_1',H_3\)); 7.00 (d, \(J=1\) Hz, \(H_6\)); 7.15–7.45, 7.65–7.90 (Ar). 13C NMR (22.51 MHz, CDCl\textsubscript{3}/C\textsubscript{6}D\textsubscript{6}, 1:1): \(\delta\) 20.06, 20.17, 22.78 (OAc Me's); 29.17 (N\textsubscript{3}−Me); 30.10 (C\textsubscript{2}); 37.29 (N\textsubscript{1}−Me); 63.02 (C\textsubscript{6}); 69.58, 72.32, 73.91 (C\textsubscript{1}, C\textsubscript{3}, C\textsubscript{4}, C\textsubscript{5}); 106.69 (C\textsubscript{5}); 145.86 (C\textsubscript{8}); 149.05 (C\textsubscript{2}); 167.09 (C\textsubscript{4}); 169.26, 169.53, 169.91 (OAc CO's); (triphenylnarsine resonances are omitted).

RESULTS

The composition of organopalladium compound 1 was established by elemental analysis4, molecular weight determination by osmometry, fast atom bombardment mass spectrometry and 1H, 13C and 31P NMR spectrometry. More detailed structural features of 1 were probed by NMR, IR and UV spectroscopies.

Combustion analysis established the elemental composition of 1 as C\textsubscript{36}H\textsubscript{38}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{9}Pd indicative that, formally, palladium bears only three ligands, the C-glycosyl moiety, triphenylphosphine and chloride. This result is consistent with (a) a chloride-bridged dimeric structure (1b) or (b) a structure in which the C-glycosyl moiety provides both a σ and a π bonding site for palladium (1a). The dimeric structure 1b was ruled out by osmometric

![Fig. 2. 1H Nuclear magnetic resonance spectrum of chloro [1,3-dimethyl-5-(3,4,6-tri-O-acetyl-2-deoxy-α-D-arabinohexopyranosyl)-2,4-(IH,3H)-pyrimidinediennato] (triphenylphosphine) palladium (1a) in benzene. The inserts show portions of the 1H NMR spectrum of the triphenylnarsine analog (2a) used to identify 31P, 1H spin-spin interactions. Coupling of the anomeric hydrogen (H\textsubscript{1}) with H\textsubscript{6} of the pyrimidine moiety is not indicated explicitly.](image-url)
molecular weight determination using benzene solutions which gave a molecular weight of 826 (calculated for monomer, 816).

Fast atom bombardment (FAB) mass spectra of organopalladium compounds 1a and 2a (Figure 1) exhibit ions of highest mass which correspond to [M–Cl]⁺ at m/z 779 and 823 respectively confirming the expected nominal compositions of the compounds. Mass spectrometry is not a reliable method for establishing the dominant species (monomer or dimer) of salts in solid or solution states owing to the frequent observation of dimeric and oligomeric cluster ions in their mass spectra. In each mass spectrum, an ion is observed at m/z 517 corresponding to palladium plus the C-glycosidic residue. Other fragment ions characteristic of the structures of the organopalladium complexes are observed. Noteworthy is the ion at m/z 411 in the FAB mass spectrum of 2a which corresponds to [MH]⁺ for the product formed upon loss of palladium and β-hydrogen. In the spectrum of triphenylarsine compound 2a (Fig. 1 bottom) ions observed at m/z 718 and 641 are not directly related to the complex and may be indicative of decomposition during mass spectrometric analysis.

The ¹H NMR spectrum of 1a (Fig. 2) is definitive in establishing the configuration and conformation of the carbohydrate pyranosyl ring. The large coupling constants observed for H–3', -4' and -5' (J₃',₄'=J₄',₅'=10 Hz) indicate that these hydrogens occupy axial positions. Similarly, the small magnitude of J₁',₂' (5 Hz) establishes at least one of these hydrogens as equatorial. Owing to coupling of H–2' and H–3' with ³¹P it was convenient to obtain J₁',₂' and J₂',₃' by analysis of the ¹H NMR spectrum of the triphenylarsine analog (2a) in which J₁',₂' (5 Hz) and J₂',₃' (12 Hz) are clearly evident (Fig. 2, inserts). Therefore, H₁' is equatorial and the pyrimidinedionylo moiety is axially disposed; H₂' is axial and palladium occupies an equatorial position. These data are indicative that the carbohydrate pyranyl ring is in a chair conformation with large substituents at C₂ (Pd). C₃', C₄' (OAc's) and C₅' (CH₂OAc) in the more stable equatorial positions; only the pyrimidinyl group at C₁' is axial.

Spectroscopic properties of palladium compounds 1a and 2a which reveal a π-bonding site for palladium in the pyrimidinedionylo moiety are noted in table 1. Thus, the UV spectrum of palladium compound 1a exhibits λ_max in methanol at 291 nm (Table 1) whereas the pyrimidine chromophore in related, non-metal containing C-glycosides, e.g. 1,3-dimethyl-2-(3,4,6-tri-O-acetyl-2-deoxy-β-D-arabinopyranosyl-2,4(1H,3H)-pyrimidinedione (3) exhibits an absorption maximum at 270 nm. Similarly, the IR absorption bands for the pyrimidinedione carbonyl groups of palladium complexes 1a and 2a are

<table>
<thead>
<tr>
<th>Compound</th>
<th>UV (MeOH) λ_max, nm</th>
<th>IR (KBr-disc) cm⁻¹</th>
<th>¹³C NMR (C₆D₆) δ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N₁–CH₃</td>
<td>N₂–CH₃</td>
</tr>
<tr>
<td>Palladium Complex 1a</td>
<td>291</td>
<td>1640</td>
<td>1635</td>
</tr>
<tr>
<td>C-nucleoside 3</td>
<td>270ᵇ</td>
<td>1667</td>
<td>1646</td>
</tr>
</tbody>
</table>

| Palladium Complex 2a | 1641 | 1633 | 37.29 | 149.05 | 29.17 | 167.09 | 106.69 | 145.86 |

| 2-deoxy | 1667 | 1646 | 37.18 | 151.35 | 27.58 | 161.70 | 112.68 | 139.68 |

* The ¹³C NMR spectrum of 2a was recorded in C₆D₆/CDCl₃ 1:1. ᵃ From Ref. 8.

displaced with respect to those of 3 (Table 1). The 13C NMR resonances for pyrimidine ring carbons are equally indicative of palladium bonding. The 13C resonances for the C$_4$-carbonyl of palladium complexes 1a and 2a are shifted about 5 ppm to lower field as compared with the corresponding resonance for the metal free C-nucleoside 3. The resonances for C$_5$ of the conjugated double-bond experience shifts of similar magnitude to higher fields, whereas the C$_6$ resonances are shifted downfield.

All these data, the bathochromic shift of the UV chromophore, the reduced frequency of the carbonyl absorption in the IR and the characteristic 13C NMR resonance shifts (Table 1) indicate a polarization of the pyrimidinedionyl α,β-unsaturated carbonyl system owing to palladium bonding.

The configuration of ligands around palladium is also evident from consideration of the available chemical and spectroscopic data. The structure of the C-nucleoside insures that the C$_2$-σ-bonding site of the carbohydrate and the π-bonding site of the pyrimidine occupy cis ligand positions on square planar palladium. That the triphenylphosphine ligand is cis to C$_2^*$ is indicated by the small magnitude of the coupling constant between C$_2^*$ and 31P; $^{2}J_{C,P}$=2.5 Hz (see experimental). For comparison, data are reported by Nakazawa, Ozawa and Yamamoto for some cis and trans (R$_3$P)$_2$PdMe$_2$ complexes which exhibit $^{2}J_{C,P}$ (cis)=$10-16$ Hz and $^{2}J_{C,P}$ (trans)=110 Hz (see also Refs. 19-22). The ligand arrangement about palladium in complexes 1a and 2a accords with studies of Pfeffer et al. who have shown that phosphine ligands rarely bond trans to a CH$_2$ group in palladium compounds.

DISCUSSION

Cyclometalated complexes of transition-metal ions continue to be of intense experimental interest. Most metallcycles of transition-metals which have been prepared involve five-membered rings and nitrogen donor ligands. Six-membered ring metallcycles and metallcycles stabilized by oxygen donor ligands are rare. The available data for the glucopyranosylpalladium complexes establish that the pyrimidinyl group provides a π-bonding site for palladium. Structures 1a and 2a in which the C$_4$ carbonyl group of the pyrimidine ring is π-bonded to palladium, are consistent with the spectroscopic properties of the complexes and are preferred to alternative formulations involving palladium coordination with the pyrimidinyl C$_5$-C_6 double bond or with a ring nitrogen since these latter structures appear to involve considerable metallcycle ring strain.

The glucopyranosylpalladium metalallocyclic system is quite stable in the solid state and is moderately stable at room temperature in solution (acetonitrile, benzene, chloroform) although metallic palladium is formed over a period of hours. This stability is remarkable in view of the presence of a cis β-hydrogen, the weakness of the oxygen→palladium bond within the metalloccycle and the rich decomposition chemistry of the system which includes three separate and selective palladium elimination reactions activated by heating (syn β-hydrogen elimination) or upon treatment with acid (anti alkoxide elimination with pyran ring rupture) or base (anti acetate elimination).

Presumably, the stability of the complex has its origin in conformational rigidity of the system which establishes a significant barrier to the attainment of the critical alignments of palladium with other pyranosyl ring substituents necessary for the available decomposition modes. Recently, Catellani and Chiusoli have used the presence of such barriers in the rigid norbornylpalladium system to demonstrate some unusual organometallic decomposition reactions and some interesting synthetic applications.

Acknowledgements. Appreciation is expressed for financial support provided by the National Institutes of Health (GM 30310, AM 20937), S. Söderlundhs Minnesfond and Thuns fond. We thank Professor Charles S. Kraihanzel for useful discussions.

REFERENCES

Received September 6, 1984.