An NMR Spectrometric and Potentiometric Study on the Protonation of Timolol

ANTTI O. K. NIEMINEN,
LAURI H. J. LAJUNEN,
TUULIKKI HOLSTER,
LAURI HIETANIELI and HEIKKI NUPPONEN

a Department of Chemistry, University of Oulu, SF-90570 Oulu 57, and
b Oy Star Ab, Chemical Factory, Synthesetical Research Laboratory, Niittyhaankatu 20,
Box 33, SF-33721 Tampere 72, Finland

A study was undertaken to evaluate the protonation mechanism of (S)-(++)-1-(1,1-dimethyl)-ethalamino)-3-[(4-(4-morpholino)-1,2,5-thiadiazol-3-yl)oxy]-2-propanol (Timolol) by means of 13C and 15N NMR spectroscopy, and protonation constants by means of potentiometric pH titrations. The potentiometric data clearly showed that the title compound can add only one proton in water–ethanol solvent mixtures. The 13C NMR measurements confirmed this result and in addition, revealed that the protonation takes place at NH nitrogen.

(S)-(++)-1-(1,1-dimethyl)-ethylamino)-3-[(4-(4-morpholino)-1,2,5-thiadiazol-3-yl)oxy]-2-propanol, more widely known as Timolol, is a β-adrenergic blocking agent used in the treatment of angina pectoris, hypertension and glaucoma.

Prompted by some synthetic interests we have studied the protonation of Timolol using the potentiometric method for the determination of the protonation constant and both 13C and 15N NMR spectroscopy for evaluating the mechanism of the protonation.

Experimental

Preparation of Timolol. Timolol was prepared according to a procedure described in the literature.

NMR measurements. The 13C and 15N NMR spectra were recorded on a JEOL FX 100 spectrometer operating at 25.05 and 10.04 MHz, respectively.

* Present address: Kiilto Oy, Research Laboratory, Box 250, SF-33101 Tampere 10, Finland.

The measurement conditions for 13C NMR spectra were: ambient temperature; spectral width 6 kHz; data points 32 K; pulse width 5 μs (30$^\circ$), and pulse repetition time 3 s for proton noise decoupled or 5 s for gated decoupled (with Nuclear Overhauser Enhancement, NOE) spectra. In addition, a 13C NMR spectrum was recorded to suppress NOE and the gated decoupling was repeated at 60 s intervals. The protonated Timolol was measured as a 1 M solution in CDCl$_3$ and its protonation ability was studied by adding 1, 2 or 4 equivalents of trichloroacetic acid. Tetramethylsilane, TMS, was used as an internal reference.

The 15N NMR chemical shifts were determined using a gated decoupling irradiation mode (without NOE) and the measurement conditions were: ambient temperature; spectral width 6 kHz; data points 16 K; pulse width 10 μs (30$^\circ$); and pulse repetition time 6 s. Nitromethane in a coaxial inner tube was used for referencing 15N chemical shifts. The 1.3 M Timolol in CDCl$_3$ and the external reference were doped with triacetylacetetonato chromium(III), Cr(acac)$_3$, to a concentration of 0.05 M. A proton noise decoupled 15N NMR spectrum of Timolol was recorded without Cr(acac)$_3$, and the pulse repetition time was 10 s in that experiment. As for the 13C NMR part, the protonation was achieved by adding trichloroacetic acid.

Potentiometric measurements. A Radiometer PHM 64 digital pH meter, equipped with a glass electrode (Beckman N 40495) and Ag,AgCl reference electrode, was used in the emf titrations. The protonation of Timolol was studied in water–ethanol mixtures because of its limited solubility in pure aqueous solutions. Two differ-
ent media were used in the measurements: the ethanol content was either 9.3 or 20 wt % and in both cases the solutions were 0.1 M with respect to NaClO₄. The electrode system was calibrated with the acetate buffer solutions (0.05 M acetic acid, 0.05 M sodium acetate) as reported by Bates et al. Three separate titrations were carried out in both media with varying total Timolol concentrations. The titrant was an aqueous 0.1 M NaOH (Titrisol, Merck) solution which was 0.1 M with respect to NaClO₄. A threefold amount of HClO₄ with respect to Timolol was added to the initial solution to be titrated. Ethanol (94 wt %) was added to the solution to be titrated in the course of the titration to keep the ethanol content constant.

Treatment of the potentiometric data. The mean number of protons bound to each Timolol molecule, \tilde{n}_H, were calculated from the eqns. (1) and (2).

$$\tilde{n}_H(\text{exp})=[C_H-(\lbrack H^+\rbrack-K_{HS}[H^+]^{-1})]/C_L \quad (1)$$

$$\tilde{n}_H(\text{calc})=K_1[H^+]/(1+K_1[H^+]) \quad (2)$$

C_H = the total concentration of free and dissociable protons

$[H^+]$ = the free hydrogen ion concentration

K_{HS} = the apparent autoprotolysis constant of the solvent

C_L = the total Timolol concentration

K_1 = the first protonation constant,

$$K_1=K(L+H^+=HL^+$$

For the apparent autoprotolysis of the solvent ($K_{HS}=[H^+] [OH^-]/\tilde{n}_H^2$), the values 14.20 and 14.40 were used in the 9.3 and 20 wt % ethanol solutions, respectively. The \tilde{n}_H value was calculated from the Debye-Hückel equation:5

$$\log f_\pm = \frac{-354.5(d(s)/\varepsilon(s))^3/2}{1+13.31(d(s)/\varepsilon(s))^{1/2}} \quad (3)$$

The first protonation constant, K_1, was calculated from the eqn. (4),

$$K_1=(C_L+C_{HCIO_4} \cdot CB-[H^+]+K_{HS}[H^+]^{-1})/$$

$$\left(C_B-C_{HCIO_4}+[H^+]-K_{HS}[H^+]^{-1} \right) [H^+] \quad (4)$$

C_{HCIO_4} = the total perchloric acid concentration

C_B = the NaOH concentration added in the solution to be titrated

RESULTS AND DISCUSSION

13C NMR. The 13C chemical shifts for Timolol and protonated Timolol with structurally indicia carbon-proton coupling constants are presented in Table 1. While the coupled spectrum immediately permitted the assignment of C-1, C-2 and C-4 by their multiplicity, the NOE suppressed decoupled 13C NMR spectrum was needed to interpret the methylene carbon signals at 44.4, 47.8, 66.3 and 72.7 ppm. This experiment unambiguously showed that the lines with two-fold intensities at 47.8 and 66.3 ppm belonged to C-8/C-8' and C-9/C-9' respectively. Hence the remaining signals at 44.4 and 72.7 ppm were safely assigned to C-3 and C-5, respectively, by the chemical shift criteria. The two olefinic carbons at 149.5 and 153.4 ppm could be assigned to C-7 and C-6, respectively, by their three-bond couplings. While the resonance signal of C-7 was only a broadened multiplet, that of C-6 was a

<table>
<thead>
<tr>
<th>Carbon</th>
<th>No Cl₃CCOOH</th>
<th>C−H coupling constants</th>
<th>1 equivalent of Cl₃CCOOH</th>
<th>13C chemical shifta</th>
<th>Δ^s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.9</td>
<td>$^1J_{CH}$ 125.0</td>
<td>$^3J_{CH}$ 4.4</td>
<td>25.7</td>
<td>−3.2</td>
</tr>
<tr>
<td>2</td>
<td>50.3</td>
<td>$^2J_{CH}$ 2.2</td>
<td>57.2</td>
<td>+6.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>44.4</td>
<td>$^1J_{CH}$ 133.4</td>
<td>2.5</td>
<td>44.5</td>
<td>+0.1</td>
</tr>
<tr>
<td>4</td>
<td>67.8</td>
<td>$^1J_{CH}$ 143.4</td>
<td>65.6</td>
<td>−2.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>72.7</td>
<td>$^1J_{CH}$ 147.6</td>
<td>71.6</td>
<td>−1.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>153.4</td>
<td>$^3J_{CH}$ 2.6</td>
<td>152.7</td>
<td>−0.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>149.5</td>
<td></td>
<td>149.4</td>
<td>−0.1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>47.8</td>
<td>$^1J_{CH}$ 138.3</td>
<td>47.8</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>66.3</td>
<td>$^1J_{CH}$ 143.7</td>
<td>66.3</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

a In ppm, downfield from TMS. b In Hz. s Expressed as a chemical shift difference (in ppm) from the unprotonated Timolol.

Fig. 1. The $\Delta \sigma_{13c}$ values versus the added amount of Cl$_3$CCOOH.

nicely resolved triplet with a coupling constant of 2.6 Hz.

The site of protonation was studied by adding trichloroacetic acid to the CDCl$_3$ solution of Timolol. The addition of one equivalent of acid caused a deshielding effect of 6.9 and 0.1 ppm for C-2 and C-3, respectively. The acid had no observable effect on the chemical shifts of the carbon atoms in the morpholine ring, but it shielded the carbons β from the NH-nitrogen and also slightly from C-5, C-6 and C-7 (Table 1).

When more acid was added, the resonance signal of C-2 moved further downfield and the chemical shift was 58.6 ppm with four equivalents of trichloroacetic acid. Interestingly, the acid excess only caused a minor upfield effect of 0.1–0.3 ppm for the other carbon atoms (Fig. 1).

According to these changes in the 13C chemical shifts, the protonation takes place merely at the secondary nitrogen atom.

15N NMR. Due to a possibility of observing the site of protonation by direct NMR measurement

of the nitrogen nucleus, we measured the 15N chemical shifts for Timolol and for Timolol with an equimolar amount of trichloroacetic acid in CDCl$_3$ (Table 2).

In the proton noise decoupled 15N NMR spectrum of Timolol, only the NH and the morpholine nitrogen resonance signals are clearly visible. The NH nitrogen signal at -321.7 ppm shows the highest intensity due to its dominating 15N–1H dipole–dipole relaxation and, consequently, an almost maximum nuclear Overhauser enhancement factor, NOEF, of -4.5 ± 0.5. The morpholine nitrogen resonates at -307.2 ppm shielded by 40.9 ppm with respect to the unsubstituted morpholine. This kind of a strong shielding effect is typical for numerous cyclic amines conjugated by a double bond.

The addition of some parametric relaxation reagent, for example Cr(acac)$_3$, decreases 15N spin-lattice relaxation times and suppresses the NOE. In the gated decoupled (without NOE) 15N NMR spectrum of Timolol all the nitrogen resonances are visible. The signals at -102.5 and -98.2 ppm belong to N-5 and N-2, respectively, in the 1,2,5-thiadiazole ring. This assignment, which is based on inductive effects, can be, however, converse, but the unambiguous assignment with the aid of four-band 15N–1H coupling constants is undoubtedly impossible without an enriched sample. When 1 equivalent of trichloroacetic acid was added to the CDCl$_3$ solution of Timolol, the NH nitrogen was deshielded by 3.7 ppm. However, downfield shifts of 0.8 and 2.1 ppm for N-2 and N-5, respectively, were also found and only the morpholine nitrogen showed an upfield shift of 0.1 ppm. Although the NH nitrogen was mostly deshielded, thus corroborating the results obtained by 13C NMR measurements, we made an additional study by poten-

<table>
<thead>
<tr>
<th>Nitrogen</th>
<th>No Cl$_3$CCOOH 15N chemical shiftb</th>
<th>1 equivalent of Cl$_3$CCOOH 15N chemical shiftb</th>
<th>$\Delta ^c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>-321.7</td>
<td>-318.0</td>
<td>+3.7</td>
</tr>
<tr>
<td>morpholine nitrogen</td>
<td>-307.2</td>
<td>-307.3</td>
<td>-0.1</td>
</tr>
<tr>
<td>N-2</td>
<td>-98.2</td>
<td>-97.4</td>
<td>+0.8</td>
</tr>
<tr>
<td>N-5</td>
<td>-102.5</td>
<td>-100.4</td>
<td>+2.1</td>
</tr>
</tbody>
</table>

a Protonation was achieved by adding 1 equivalent of trichloroacetic acid. b In ppm, upfield from external nitromethane. c Expressed as a chemical shift difference (in ppm) from the unprotonated Timolol (a positive sign corresponds to a downfield shift).

tiometric methods to verify if there were more possible sites for the protonation.

Potentiometry. The experimental data obtained potentiometrically were visualized with the $n_H(-\log [H^+])$ plot shown in Fig. 2. It is clear from the figure that in the studied media and concentration range, n_H is a function of $-\log [H^+]$, indicating that polymerization is negligible. Further, Fig. 2 suggests that Timolol can add only one proton in the ethanol–water mixtures studied and the pH range over which the measurements were made, because all the experimental n_H values lie between 1 and 0.

For the logarithms of the first protonation constant of Timolol, the values 9.29±0.03 and 9.23±0.04 were obtained in solutions containing 9.3 and 20% ethanol, respectively. The quoted errors are three times the standard deviations. The protonation constant in 20% ethanol is a little lower than that in 9.3% ethanol. The protonated form has a positive charge (HL$^+$) whereas the unprotonated form is uncharged (L). When the ethanol content in the solvent increases, the reciprocal value of the permittivity of the solvent decreases, which favours the formation of neutral species.

CONCLUSIONS

Potentiometric titration shows that for ethanol–water mixtures, Timolol can add only one proton. The 13C NMR measurements corroborate this result and also reveal that protonation takes place at NH nitrogen. If in an NMR study the protonation is achieved by adding trichloroacetic acid, the 15N chemical shifts are not so indicative as the 13C chemical shifts for Timolol.

REFERENCES

Received March 30, 1983.