Methyl(cyanomethyl)phosphines. Synthesis and Nucleophilic Reactivity

OTTO DAHL, ULLA HENRIKSEN and CLAUS TREBBIEN

Department of General and Organic Chemistry, University of Copenhagen, The H. C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen, Denmark

The preparation of Me_2PCH_2CN , $MeP(CH_2CN)_2$ and $P(CH_2CN)_3$ is described, and phosphorus lone-pair ionization potentials and second order rate constants for their reactions with benzyl bromide in acetonitrile at 35 °C are determined. The rate constant for Me_2PCH_2CN is approximately the same as that for Ph_3P , whereas that for $P(CH_2CN)_3$ is 2×10^4 times smaller. This low nucleophilic reactivity of cyanomethylphosphines is ascribed to polar effects from the cyano group(s) which contracts the phosphorus lone-pair.

(Cyanomethyl)phosphines, $R_{3-n}P(CH_2CN)_n$, are examples of C-functionalized tertiary phosphines which have recently attracted considerable interest, mainly because of their potential as chelating ligands. 1-3 Introduction of functional groups close to the phosphorus atom, however, changes the donor property of phosphorus for both steric and electronic reasons, and accordingly changes the coordinating ability (towards metal centers) and nucleophilicity (towards carbon centers). Obviously it would be valuable to have quantitative information on how different functional groups change the donor property in order to help designing new phosphines with specific properties. Functionalization at the α carbon should give maximum effects, and many such substituted phosphines are now known, e.g. the trisubstituted phosphines P(CH₂OH)₃, P(CH₂NR₂)₃, ⁵ P(CH₂PMe₂)₃, ⁶ P(CH₂COOEt)₃, P(CH₂COOH)₃ and P(CH₂CN)₃. However, we are aware of only one quantitative study of the nucleophilic reactivity of α -substituted phosphines. The quaternization of some diphenylphosphinoacetic acid derivatives with ethyl iodide has been correlated with Taft σ^* values and phosphorus lone-pair ionization potentials.¹⁰

The present paper describes the preparation of two new α -substituted phosphines, Me₂PCH₂CN and MeP(CH₂CN)₂, a new route (eqn. (4)) to the known P(CH₂CN)₃, and quantitative results on their very different nucleophilic reactivities.

Synthesis. (Cyanomethyl)phosphines have hitherto been prepared by three methods [eqn. (1)-(3)]. The first method [eqn. (1)] 11

$$R_{2}POEt + ClCH_{2}CN \rightarrow$$

$$R_{2}P(O)CH_{2}CN \xrightarrow{Ph_{2}SiH_{2}} R_{2}PCH_{2}CN \qquad (1)$$

$$Ph_{3-n}P(SiMe_3)_n + n ClCH_2CN \rightarrow Ph_{3-n}P(CH_2CN)_n + n Me_3SiCl$$
 (2)

$$PCl_3 + 3 Bu_3SnCH_2CN \rightarrow P(CH_2CN)_3 + 3 Bu_3SnCl$$
 (3)

allows only one cyanomethyl group to be introduced but is otherwise fairly general. This method was chosen to prepare Me₂PCH₂CN. The second route [eqn. (2)] 12 involves the preparation of silvlphosphines which are very reactive and sometimes difficult to obtain, and the yield is low for n=3. The third method [eqn. (3)] 9 seems fairly general (Cl₂PCH₂CN ¹³ and MeP(CH₂CN)₂¹⁴ have been similarly obtained) but its drawback is the low yield synthesis of Bu₃SnCH₂CN. To obtain MeP(CH₂CN)₂ and P(CH₂CN)₃ we therefore attempted a synthesis known ¹⁵ Reformatsky via the BrZnCH₂CN [eqn. (4)], in analogy with Podlahová's successful syntheses of Ph_{3-n}P-(CH₂COOEt)_n. The reactions when run at low temperatures (-78 °C) gave MeP(CH₂CN)₂ and P(CH₂CN)₃ in fair yields. As it is a one pot synthesis from readily obtainable starting materials, this route is considered the most attractive one to prepare (cyanomethyl)phosphines with two or three cyanomethyl groups.

$$Me_{3-n}PCl_n+n BrZnCH_2CN \rightarrow Me_{3-n}P(CH_2CN)_n$$
 (4)

Nucleophilic reactivity. P(CH₂CN)₃ reacts very slowly with alkyl halides. Several days, in refluxing acetonitrile with excess benzyl bromide, were necessary to prepare PhCH₂P⁺(CH₂CN)₃Br⁻, and refluxing with excess ethyl iodide in acetone did not give appreciable amounts of a phosphonium salt after 2 days. The above benzylphosphonium salt hydrolyzes easily at room temperature to give PhCH₂P(O)(CH₂CN)₂. This reflects the good leaving group ability of the cyanomethyl group which, more surprisingly, also manifests itself in the properties of P(CH₂CN)₃. Although fairly stable to water and dilute HCl, P(CH₂CN)₃ is rapidly hydrolyzed to HPO₃²⁻ and CH₃CN by NaOH at room temperature. 14 MeP(CH₂CN)₂ and Me₂PCH₂CN react more with smoothly alkvl halides. PhCH₂(Me)P⁺(CH₂CN)₂Br⁻ is somewhat prone to hydrolysis.

Quantitative results on the nucleophilic reactivity of Me₂PCH₂CN, MeP(CH₂CN)₂ and P(CH₂CN)₃ were obtained from following, by conductivity measurements, their reactions with benzyl bromide in acetonitrile at 35 °C. The

Table 1. Rate constants for quaternization, Taft σ^* values and phosphorus lone-pair ionization potentials of $Me_{3-n}P(CH_2CN)_n$ and Ph_3P .

	k_2^a (1 mol ⁻¹ s ⁻¹)	$\Sigma \sigma^{*b}$	IP ^c (eV)
P(CH ₂ CN) ₃	1.3×10^{-7} 3.0×10^{-5} 3.9×10^{-3} 3.0×10^{-3}	5.13	10.59
MeP(CH ₂ CN) ₂		3.42	9.83
Me ₂ PCH ₂ CN		1.71	9.22
Ph ₃ P		1.80	7.88

^a Second order rate constant for quaternization with benzyl bromide in acetonitrile at 35 °C. ^b σ^* =0.00 for Me, 0.60 for Ph and 1.71 for CH₂CN. ¹⁰ ^c Vertical ionization potentials.

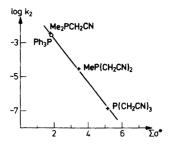


Fig. 1. Plot of rate constant versus Taft σ^* values for the reaction $R_3P+PhCH_2Br \rightarrow R_3PhCH_2P^+Br^-$ in acetonitrile at 35 °C.

second order rate constants for quaternization, including that of Ph₂P for comparison, are given in Table 1, together with the Taft σ^* values and the phosphorus lone-pair ionization potentials (IP). The rate data show that the cyanomethyl group decreases the nucleophilic reactivity of phosphorus very strongly. Me₂PCH₂CN reacts nearly as slowly as Ph₃P, and P(CH₂CN)₃ is approximately 20 000 times less reactive. The effects of multiple cyanomethyl substitution are additive as shown by a linear dependence of log k_2 with the Taft σ^* values (Fig. 1). The rate constants also correlate with the IP's (Fig. 2), although Ph₃P is anormalous. A correlation between gas phase (IP) and solution ($\log k_2$) properties may fail for several reasons, 10 but the main cause of the deviation for Ph₃P is probably the different C-P-C bond angle (103° for $Ph_3P_{16}^{16}$ about 98° for $P(CH_2CN)_3^{9}$ and $Me_3P_{17}^{17}$). A larger C-P-C angle corresponds to a more extended lone-pair (one with more p character) with a lower IP, as observed. The correlation of

Fig. 2. Plot of rate constant versus phosphorus lone-pair ionization potential for the reaction $R_3P+PhCH_2Br \rightarrow R_3PhCH_2P^+Br^-$ in acetonitrile at 35 °C.

log k_2 with IP for Me₂PCH₂CN, MeP(CH₂CN)₂ and P(CH₂CN)₃ indicates that the cyano groups exert a field (or inductive) effect on the lone-pair which results in a contraction of it and thereby makes it less available for reactions.

This conclusion is corroborated by CNDO/2 calculations, ¹⁸ which show that the electron density in the lone pair region of P(CH₂CN)₃ is reduced relative to that of Me₃P. *Ab initio* calculations on Me₂PCH₂CN and low temperature X-ray diffraction studies on P(CH₂CN)₃ are in progress ¹⁹ with the aim to give more evidence on the electron distribution in these cyanomethylphosphines.

EXPERIMENTAL

Analyses were performed by the microanalytical department of this laboratory. ¹H and ³¹P NMR spectra were recorded on a JEOL FX 90 Q Fourier NMR spectrometer. Chemical shifts (ppm) are given relative to internal TMS for ¹H spectra ($\delta_{\rm H}$) and external 85 % H₃PO₄ for ³¹P spectra (δ_P) , and are given as positive for low-field shifts. The He(I) photoelectron spectra were obtained on a Perkin-Elmer PS 18 spectrometer calibrated using the 2P3/2 peaks of Ar and Xe. Ionization potentials were reproducible within ± 0.03 eV. The kinetic measurements were performed at 35.0±0.2° using the conductivity method of Henderson and Buckler.²⁰ A Radiometer CDM 2 Conductivity Meter and a cell with platinized platinum electrodes with a cell constant of 0.97 cm⁻¹ was used. Acetonitrile (Merck "Uvasol") was purified through a column of neutral Al₂O₃ (Woelm N-Super I) and deoxygenated by bubbling Ar through it for 10 min. The solvent thus purified had a conductivity of less than 0.2 μ ohm⁻¹ cm⁻¹. The solutions were prepared at 20 °C and corrected for concentration changes upon heating to 35 °C. The reactions were followed until a few percent of the phosphine had reacted. The rate constants were calculated from the linear approximation kt=x/ab. 20 Benzyl bromide and phosphine concentrations were varied to prove that the reactions were second order. Up to ten times molar excess of benzyl bromide was used for the more slowly reacting phosphines to ensure convenient rates. The calculated rate constants (Table 1) are the results of duplicate runs, which were reproducible within ± 10 %. All manipulations with phosphines were carried out under N₂ or Ar.

P,P-dimethylphosphinoylacetonitrile (Me₂P(O)CH₂CN). Me₂POBu ²¹ (3.35 g, 25

mmol) was added in 0.5 ml portions to ClCH₂CN (3.8 g, 50 mmol) at 75 °C with stirring. After 1 h at 75 °C BuCl and excess ClCH₂CN were removed *in vacuo* and the residue recrystallized from ethyl acetate to give Me₂P(O)CH₂CN (1.90 g, 65 %), m.p. 75–78 °C (hygroscopic). Anal. C₄H₈NOP: C, H, N. NMR (CDCl₃): δ_P 38.0; δ_H 1.76 (CH₃, d, $^2J_{PH}$ 13.2 Hz), 3.04 (CH₂, d, $^2J_{PH}$ 15.1 Hz).

P,P-dimethylphosphinoacetonitrile (Me_2PCH_2CN). A mixture of $Me_2P(O)CH_2CN$ (1.75 g, 15 mmol) and Ph_2SiH_2 (2.76 g, 15 mmol) was heated with stirring to 175 °C for 6 h. Vacuum distillation through a small Claisen head gave Me_2PCH_2CN (1.24 g, 82 %), b.p. 58-59 °C/12 mmHg. The purity was more than 97 % according to 1H and ^{31}P NMR. NMR (CDCl₃): δ_p -50.1; δ_H 1.19 (CH₃, d, $^2J_{PH}$ 3.8 Hz), 2.40 (CH₂, d, $^2J_{PH}$ 5.6 Hz).

Benzyl(cyanomethyl)dimethylphosphonium bromide (PhCH₂Me₂P⁺CH₂CN Br⁻). A mixture of Me₂PCH₂CN (0.20 g, 2 mmol) and PhCH₂Br (0.68 g, 4 mmol) in dry ether (10 ml) was kept at 20 °C for 6 days. The precipitate was washed with ether, dried and recrystallized from 2-propanol to give the product (0.33 g, 60 %), m.p. 120–121.5 °C. Anal. C₁₁H₁₅BrNP: C, H, N, Br. NMR (CD₃CN): δ_p 31.7.

P-methylphosphinediyldiacetonitrile $(MeP(CH_2CN)_2)$. A solution of BrCH₂CN (7.20 g, 60 mmol) in dry THF (30 ml) was added during 20 min to a stirred suspension of Zn (Riedel-de Haën "chem. rein. geraspelt", freshly etched with 0.2 M HCl followed by washing with water, acetone, ether and drying; 3.92 g, 60 mmol) in dry THF (10 ml). The temperature was kept at ca. 20 °C by occasional immersion in an ice-bath. The resulting green to brown solution was cooled to -78 °C and MePCl₂ (3.51 g, 30 mmol) in dry THF (10 ml) added with stirring during 20 min. The reaction mixture was allowed to reach room temperature slowly (over ca. 6 h), filtered through a glasswool plug and the precipitate washed with THF (2×10 ml). The solvent was removed at 10 mmHg and the residue dissolved in deoxygenated water (20 ml). The product was extracted with CH₂Cl₂ (2×20 ml) and the CH₂Cl₂ solution washed with water (20 ml) and dried (Na₂SO₄). Evaporation of the solvent and distillation in vacuo through a small Claisen head gave MeP(CH₂CN)₂ (1.13 g, 30 %), b.p. 99-102 °C/0.20 mmHg. The purity was higher than 97 % according to ¹H and ³¹P NMR. NMR (CDCl₃): $\delta_{\rm p}$ -38.2: $\delta_{\rm H}$ 1.37 (CH₃, d, $^2J_{\rm PH}$ 5.5 Hz), 2.63 (CH₂, AB part of ABX spectrum, $\Delta_{\rm AB}$ 0.04 ppm, $^2J_{\rm AB}$ 17.2, $^2J_{\rm PH}$ 5.4 and 6.0 Hz).

P-methylphosphonoyldiacetonitrile (MeP(O)(CH₂CN)₂). MeP(CH₂CN)₂ (0.13 g, 1

mmol) in CH₂Cl₂ (5 ml) was oxidized by bubbling NO₂ through the solution until a green colour remained. Evaporation of the solvent and recrystallization of the residue from abs. ethanol gave the product (0.09 g, 60 %), m.p. 93–94 °C. Anal. C₅H₇N₂OP: C, H, N. NMR ((CD₃)₂CO): δ_p 31.1; δ_H 1.90 (CH₃, d, $^2J_{PH}$ 13.8 Hz), 3.49 (CH₂, d, $^2J_{PH}$ 14.5 Hz).

Benzyldi(cyanomethyl)methylphosphonium bromide (PhCH₂MeP⁺ (CH₂CN)₂ Br⁻). A mixture of MeP(CH₂CN)₂ (0.50 g, 4 mmol) and PhCH₂Br (1.37 g, 8 mmol) in CH₃CN (5 ml) was refluxed for 20 h. The solvent was removed in vacuo and the residue washed with hexane to remove excess PhCH₂Br. Recrystallization from a small amount of CH₃CN gave the product (0.47 g, 40 %), m.p. 121.5–122.5 °C. Anal. C₁₂H₁₄BrN₂P: C, H, N, Br. NMR (CD₃CN): δ_p 33.2.

Phosphinetriyltriacetonitrile (P(CH₂CN)₃). This phosphine was prepared in the same way as MeP(CH₂CN)₂, from BrCH₂CN (7.20 g, 60 mmol), Zn (3.92 g, 60 mmol) and PCl₃ (2.20 g, 16 mmol) in THF (50 ml). The reaction mixture, after reaching room temperature, was heated to reflux with active carbon and then filtered through a glasswool plug. The solvent was removed in vacuo and the brown residue was dissolved in hot, deoxygenated water (5 ml). Cooling to 0 °C gave a crystalline product which was recrystallized once from water, with addition of active carbon, to give P(CH₂CN)₃ (1.07 g, 45 %), m.p. 110–111.5 °C (lit. 9 110.5–112.5 °C).

Benzyltris(cyanomethyl)phosphonium bromide (PhCH₂P⁺(CH₂CN)₃ Br⁻). A mixture of P(CH₂CN)₃ (0.76 g, 5 mmol) and PhCH₂Br (3.4 g, 20 mmol) in CH₃CN (7 ml) was heated to reflux for 4 days. The precipitate, after cooling, was filtered off and recrystallized from CH₃CN to give the product (1.02 g, 64 %), m.p. 199–201 °C. Anal. C₁₃H₁₃BrN₃P· C, H, N, Br. NMR (CD₃CN): δ_p 31.6; δ_H 4.69 (CH₂CN, d, $^2J_{PH}$ 15.5 Hz), 4.74 (CH₂Ph, d, $^2J_{PH}$ 14.9 Hz), 7.54 (Ph).

P-benzylphosphonoyldiacetonitrile ($PhCH_2P(O)(CH_2CN)_2$). PhCH₂P⁺(CH₂CN)₃ Br⁻ (0.32 g, 1 mmol) and water (3 ml) were heated to give a clear solution. The product crystallized on cooling (0.19 g, 87 %), m.p. 163.5–165 °C. Anal. C₁₁H₁₁N₂OP: C, H, N. NMR (CD₃CN): δ_p 32.0; δ_H 3.18 (CH₂CN, d, $^2J_{PH}$ 13.4 Hz), 3.52 (CH₂Ph, d, $^2J_{PH}$ 14.8 Hz), 7.36 (Ph).

Acknowledgement. We thank Dr. Lars Henriksen for the photoelectron spectra.

REFERENCES

- Braunstein, P., Matt, D., Dusausoy, Y., Fischer, J., Mitschler, A. and Richard, L. J. Am. Chem. Soc. 103 (1981) 5115 and references therein.
- Empsall, H. D., Johnson, S. and Shaw, B. L. J. Chem. Soc. Dalton Trans. (1980) 302 and references therein.
- 3. Podlahová, J. Collect. Czech. Chem. Commun. 45 (1980) 1477.
- 4. Vullo, W. J. J. Org. Chem. 33 (1968) 3665.
- Sasse, K. In Houben-Weyl, Methoden der Organischen Chemie, Thieme, Stuttgart 1963, Vol. 12/1, p. 49.
- 6. Karsch, H. H. and Schmidbaur, H. Z. Naturforsch. B 32 (1977) 762.
- Podlahová, J. Collect. Czech. Chem. Commun. 43 (1978) 3007.
- 8. Tzschach, A. and Friebe, S. Z. Chem. 19 (1979) 375.
- Dahl, O. and Larsen, S. J. Chem. Res. (S) (1979) 396; (M), 4645.
- Dahl, O. and Henriksen, L. Acta Chem. Scand. B 31 (1977) 427.
- 11. Dahl, O. and Jensen, F. K. Acta Chem. Scand. B 29 (1975) 863.
- 12. Dahl, O. Acta Chem. Scand. B 30 (1976) 799.
- 13. Maier, L. Phosphorus Sulfur 11 (1981) 149.
- 14. Dahl, O. Unpublished result.
- Goasdoué, N. and Gaudemar, M. J. Organomet. Chem. 39 (1972) 17.
- 16. Daly, J. J. J. Chem. Soc. (1964) 3799.
- Lide, D. R., Jr. and Mann, D. É. J. Chem. Phys. 29 (1958) 914; Bartell, L. S. and Brockway, L. O. Ibid. 32 (1960) 512.
- Borch, G., Dahl, O., Klæboe, P. and Nielsen, P. H. Acta Chem. Scand. A 35 (1981) 497.
- 19. Dahl, O., Larsen, S. and Rettrup, S. To be published.
- 20. Henderson, W. A., Jr. and Buckler, S. A. J. Am. Chem. Soc. 82 (1960) 5794.
- 21. Maier, L. Helv. Chim. Acta 52 (1969) 858.

Received October 27, 1982.