Single-Ion Activities of Sodium Sulfate in Aqueous Solution #### TOR HURLEN Department of Chemistry, University of Oslo, Blindern, Oslo 3, Norway The single-ion activity coefficients of sodium and sulfate ions in aqueous 0.1-2.0 molal solutions of sodium sulfate at 25 °C have been determined by a liquid-junction approach. The results are compared to previous ones from a double-layer approach. The two approaches mutually agree at low sodium sulfate concentration (<0.2 m). The liquid-junction approach gives the most likely results at higher concentration. It gives a linear $\log (f_+^4/f_-)$ vs. m dependence with positive slope. This is interpreted by a hydration-energy involving treatment of ionic activities. It has long been known that single-ion activities are indeterminable, $^{1-3}$ unless extra thermodynamic means be introduced. $^{4-9}$ An interesting approach to such determinations uses double-layer data as extra means. 7,10,11 It directly yields single-ion activity coefficients (γ_i) . Another approach draws on estimations of liquid-junction potential differences. 8,12 It primarily yields convenient single-ion activity coefficients (γ_i') defined by eqn. (1) $$\gamma_{i}^{'} = \gamma_{i} \, r^{-z/2} \tag{1}$$ where z_i is the charge number (with sign) of the ion concerned, and r means γ_+/γ_- for potassium chloride in pure, saturated solution of this salt at the temperature concerned. ¹² At 25 °C, the value of r appears to be ^{12,13} close to unity or ¹⁴ slightly lower. The present work aims at testing the above two approaches against each other for sodium sulfate in aqueous solution. Such solutions have already been studied by the double-layer approach. ¹¹ Corresponding studies by the liquid-junction approach are presented below. The present studies especially add to previous ones on aqueous solutions of magnesium and zinc sulfates. 15 ### **EXPERIMENTAL** The experimental work comprises measurements of the liquid-junction containing equilibrium potential (E') of the Hg/Hg_2SO_4 electrode in aqueous 0.1-2.0 molal Na_2SO_4 solutions against the saturated calomel electrode (sce) under isothermal conditions at 25 °C. The solutions were made from p.a. quality salt (Merck) and twice distilled water, and the measurements were performed with equipment and procedures essentially as previously described. 12,15 ## TREATMENT From potential data at 25 °C, the convenient molal activity coefficient (γ'_{-}) of the sulfate ion is obtained by eqn. (2) $$\gamma'_{-}=(m^{\circ}/m) \exp[-(2F/RT)$$ $(E'-\Delta\phi-E^{\circ}+0.241 \text{ V})]$ (2) where m/m° is the dimensionless sulfate-ion molality concerned, E° is the molal standard hydrogen-scale potential of the Hg/Hg₂SO₄ electrode, and $\Delta\phi = \phi_t - \phi_r$ is the liquid-junction potential difference between the test solution concerned (ϕ_t) and the saturated KCl solution of the calomel reference electrode (ϕ_r) . ¹²⁻¹⁵ In the present work, 0.612 V is used for $E^{-15,16}$ and $\Delta\phi$ is estimated ⁸ from the Henderson equation ¹⁷ with limiting mobility data ¹⁸ for the ions. The convenient molal activity coefficient (γ'_{+}) of the sodium ion is subsequently obtained from γ'_{-} by eqn. (3) | Measured | | Liquid-junction based | | | Ref. 18 | Double-layer based 11 | | | |----------|-------|-------------------------|-------|------|---------|-----------------------|-------|-------------------------| | x | E'/mV | $\Delta \phi/\text{mV}$ | γ_΄ | γ'+ | γ± | γ+ | γ_ | $\Delta \phi/\text{mV}$ | | 0.1 | 419.7 | -1.9 | 0.19 | 0.67 | 0.445 | 0.665 | 0.199 | -1.6 | | 0.2 | 415.9 | -1.8 | 0.13 | 0.61 | 0.365 | 0.599 | 0.136 | -1.3 | | 0.5 | 413.3 | -1.8 | 0.065 | 0.53 | 0.266 | 0.500 | 0.075 | 0.1 | | 0.7 | 412.5 | -1.9 | 0.049 | 0.50 | 0.233 | 0.458 | 0.060 | 0.8 | | 1.0 | 412.1 | -2.0 | 0.035 | 0.48 | 0.201 | 0.410 | 0.048 | 2.1 | | 1.5 | 411.8 | -2.1 | 0.024 | 0.45 | 0.170 | 020 | 0.0.0 | 2.1 | | 2.0 | 411.5 | -2.3 | 0.018 | 0.44 | 0.152 | | | | Table 1. Potential and activity data for aqueous x m Na_2SO_4 solutions at 25 °C (see text). $$\gamma'_{+} = (\gamma_{\pm}^{3}/\gamma'_{-}) \frac{1}{2}$$ (3) using accepted data 18 for the mean molal ionic activity coefficient (γ_{\pm}) of sodium sulfate in aqueous solution. 12,13 These activity coefficients are all bare-ion ones. 19 ### RESULTS The results of the present work are summarized in Table 1. This table also compares Fig. 1. Log γ_1 (double-layer based) ¹¹ and log γ_1' (liquid-junction based) vs. $x^{1/2}$ for aqueous x m Na₂SO₄ solutions at 25 °C. Comparison to the Debye-Hückel limiting law (DHLL) for sodium and sulfate ions. the present liquid-junction based data with previous 11 double-layer based ones. The last column of Table 1 gives the values resulting for $\Delta\phi$ from eqn. (2) on accepting the latter activity data, the present potential data (E', E°) and r=1 [eqn. (1)]. The results of the liquid-junction approach and of the double-layer approach to single-ion activities mutually agree well at the lowest concentrations covered. With increasing salt concentration, however, the two approaches give increasingly differing results. This is illustrated in Figs. 1 and 2. In Fig. 1, the results of the two approaches are compared both mutually and to the Debye-Hückel limiting law ¹⁹ for the ions involved. The logarithm of the activity coefficients is there plotted against the square root of the dimensionless salt molality $(x=m/m^{\circ})$. This reveals that the liquid-junction approach shows somewhat larger deviation from the Debye-Hückel limiting law for the sodium ion (and somewhat smaller for the sulfate ion) than does the double-layer approach (assuming r=1). In Fig. 2, use is made of rational (mol fraction) activity coefficients obtained by eqn. (4) $$f_i(\text{resp. } f_i') = [1 + (3x/55.51)] \gamma_i (\text{resp. } \gamma_i')$$ (4) where x/55.51 is the mol ratio of Na_2SO_4 to H_2O in solution. ¹⁹ The functions $log(f_+^4/f_-)$ and $log((f_+')^4/f_-')$ from the double-layer and the liquid-junction approach, respectively, are there plotted vs. the dimensionless salt molality (x). The former function follows a curve with varying negative slope, whereas the latter function essentially follows a line with positive slope. These Fig. 2. (\circ) log (f_+^4/f_-) , double-layer based, ¹¹ and (\bullet) log $((f_+')^4/f_-)$, liquid-junction based, vs. x for aqueous x m Na₂SO₄ solutions at 25 °C. results are mutually incompatible. With decreasing salt concentration $(x\rightarrow 0)$, both functions approach zero. This agrees with Debye-Hückel values being $f_+^4/f_-=1$ and $(f_+^{'})^4/f_-^{'}=r^{-3}$, and it supports previous findings ^{12,13} that r be close to unity. ### **DISCUSSION** At low salt concentration (x<0.2), the present liquid-junction approach and the previous ¹¹ double-layer approach to single-ion activities for sodium sulfate in aqueous solution give essentially coinciding results. This matching is good enough to strongly support ^{12,13} that r of eqn. (1) be close to unity. With increasing salt concentration, however, the two approaches give increasingly diverging results. It then is a question which one of the two sets of data (Table 1) comes nearest to the truth. Basically, the double-layer approach 10,11 appears to the author as the better one of the two. However, the data obtained with this approach for sodium sulfate solutions of higher concentration 11 are hard to swallow. This especially applies to the values emerging from these data for $\Delta\phi$ (last column of Table 1) and for f_+^4/f_- (Fig. 2). It seems unreasonable that $\Delta\phi$ should become more and more positive and d log $(f_+^4/f_-)/dx$ more and more negative with increasing sodium sulfate concentration. The results from the liquid-junction approach are in these respects more likely. For $\Delta \phi$, this goes to the heart of the latter approach itself (to the estimate of the sign for $d(\Delta \phi)/dx$). For f_+^4/f_- , some elaboration is needed. The treatment of ionic activities is often based on an extended Debye-Hückel equation like eqn. (5) $$\log f_i = -z_i^2 A \sqrt{I/(1 + aB\sqrt{I})} + b_i m \tag{5}$$ where I is the ionic strength of the solution, A and B are temperature dependent universal constants, a is a salt dependent constant and b_i is a salt and ion dependent constant.¹⁹ For single—salt solutions of sodium sulfate, this yields eqn. (6) $$\log(f_{+}^{4}/f_{-}) = (4b_{+} - b_{-})m \tag{6}$$ for the function considered. This prescribes the function to be linear in m (or in $x=m/m^{\circ}$) as presently obtained with the liquid-junction based data, but not with the double-layer based data (Fig. 2). From a hydration-energy involving treatment of ionic activities, ²⁰ one easily deduces that eqn. (7) $$b_i = bz_i^2 / r_i \tag{7}$$ where b is a positive constant and r_i the effective radius of the dissolved i-ion, should apply to the ions of a single-salt solution. For sodium sulfate, this prescribes the sign of d $\log(f_+^4/f_-)/dx$ to be that of $r_+^{-1}-r_-^{-1}$, which most likely is positive. Also this favours the present results from the liquid-junction approach over those from the double-layer approach (see Fig. 2). A weakness in the present liquid-junction approach is the simplification of directly using concentrations and limiting mobilities in estimating $\Delta\phi$ from the Henderson equation. Even though this practice has been given some justification by considerations of diffusion contraconduction in liquid junctions, it still carries uncertainty with it. The double-layer approach avoids this uncertainty, but involves other ones. Here is room for improvement and a need for additional testing methods. ### REFERENCES - 1. Taylor, P. T. J. Phys. Chem. 31 (1927) 1478. - Gibbs, W. Collected Works, Vol. 1, Longmans Green, New York 1928. - 3. Guggenheim, E. A. J. Phys. Chem. 33 (1929) 842. - 4. Frank, H. S. J. Phys. Chem. 67 (1963) 1554. - Rabinovich, V. A., Nikerov, A. E. and Rotshtein, V. P. Electrochim. Acta 12 (1967) 155. - Bates, R. G., Staples, B. R. and Robinson, R. A. Anal. Chem. 42 (1970) 867. - 7. Stastny, M. and Strafelda, F. Collect. Czech. Chem. Commun. 37 (1972) 37. - 8. Bagg, J. and Rechnitz, G. A. Anal. Chem. 45 (1973) 271. - 9. Milazzo, G., Bonciocat, N. and Borda, M. Electrochim. Acta 21 (1976) 349. - 10. Daghetti, A. and Trasatti, S. Can. J. Chem. 59 (1981) 1925. - 11. Daghetti, A. and Trasatti, S. Extended Abstracts, 33rd ISE-meeting, Lyon 1982, Vol. 1, p. 83. - 12. Hurlen, T. Acta Chem. Scand. A 33 (1979) 631. - 13. Hurlen, T. Acta Chem. Scand. A 33 (1979) 637. - Hurlen, T. Acta Chem. Scand. A 35 (1981) 415 and 457. - 15. Hurlen, T. and Breivik, T. R. Acta Chem. Scand. A 32 (1978) 447. - Noer, S. and Grønlund, F. Ber. Bunsenges. 79 (1975) 517. - Vetter, K. J. Electrochemical Kinetics, Academic, New York and London 1967, p. 49. - 18. Parsons, R. Handbook of Electrochemical Constants, Butterworth, London 1959. - Robinson, R. A. and Stokes, R. H. Electrolyte Solutions, 2nd Ed., revised, Butterworth, London 1970. - Hurlen, T. Acta Chem. Scand. A 35 (1981) 587. Received February 8, 1983.