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Thermodynamics of Swelling and Partition Equilibria in Gels
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The thermodynamics of swelling and partition
equilibria in gels is considered. The treatment is
based on the integration of the Gibbs-Duhem
equation for the gel system and relates the
change of the chemical potential of the gel
network to the partition coefficient of the solute
and to pressure changes in the gel. Thermodyna-
mic stability conditions for swelling equilibria in
gels are also considered.

Gels of crosslinked macromolecules constitute an
important class of substances, which have found
use in many separation processes like ion ex-
change, gel permeation chronomatography, var-
ious membrane processes efc. It is therefore of
importance to consider the thermodynamic
aspects of the equilibrium properties of gels, in
particular sorption and swelling equilibria.
Although much work has been devoted to the
subject in the past!” many aspects have re-
mained conceptually unclear and there is need
for a rigorous thermodynamic treatment. The
present work is purely thermodynamic (statistical
thermodynamic aspects of the subject have re-
cently been reviewed by Dusek and Prins '), and
is based on the integration of the Gibbs-Duhem
equations for a system consisting of the gel and
an ambient solution.

Partition Equilibria. We consider an isother-
mal gel system consisting of a homogeneous gel
phase (unprimed) and an ambient solution phase
(primed). In the system three components are
present: Gel matrix (1), solvent (2) and solute
(3). The thermodynamic behaviour of the system
is governed by the Gibbs-Duhem equation,
applied to each homogeneous phase. For the gel
phase we have

mydpy+ mydp,+madps-Vdp =0 (1)
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where m; (i=1, 2, 3) is the mass of a component,
H; its specific chemical potential, V the volume of
the phase and p the pressure.

Dividing by V we obtain

c1dpy+cdpr+cydps~-dp =0 (2

where ¢; (i=1, 2, 3) is the concentration of a
component. Concerning the choice of the com-
position variables it should be noted that molar
concentrations/mol fractions are in general less
suited for gel systems as the molecular weight of
the matrix component is undefined. Also, it is
more appropriate to use the weight concentration
than the weight fraction, since the former is
directly related to volume changes, and thus the
swelling of the gel.

The concentrations in eqn. (2) are related
through the equation

cvitevatcvs=1 3)
where the partial specific volumes vy, v, and v,
are assumed to be constant.

Corresponding equations are valid for the

surrounding solution phase. Taking the pressure
of this phase (p’) as fixed, we have the equations

cadus+chdps =0 4)
cyvhtcivs=1 ®
For the sake of generality, we assume here that

v5 and v may differ from v, and v, respectively.
The equilibrium conditions are

W=y (6)

H3 =5 )
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As the chemical potential of solvent in the
solution phase can be determined (by vapor
pressure determination, osmometry efc.) u3 is in
principle a known quantity. Thus, with the aid of
eqns. (3)-(7) an integration of eqn. (2) is
possible.

Choosing the solute concentration as the inde-
pendent variable we obtain the following expres-
sions for the solvent concentrations: In the
solution phase

2= (1-cyv3)v; ®)
and in the gel phase
2= (l—cvi-c3v3)lva )

Using eqns. (4)-(9) we may write

cxdpir+c3dps = cdph+cadps =
—vi—c3vz  1—civh Cs)

- —|du" 0
(l vy vy  Ch H2 (10)

We now introduce the partition coefficient
determining the solute distribution between the
solution and gel phases:

c3=Kc'y=y(1-cyvy)ch (11)

where K is the conventional partition coefficient
and y is the “reduced” partition coefficient
corrected for the volume occupied by the gel
matrix. Substituting eqn. (11) into eqn. (10) we
obtain

V3 1-¢v
Czd[,l2+C3dﬂ3 =[;§-—}’+ }'8("3]—‘—),—1—3[1'2 (12)
2
where
£=v5(1-vhvs/vyvh) (13)

The partition coefficient is an experimentally
determinable quantity, which in general depends
on the concentration c3. Similarly, the volume V
of the swelling gel is an experimentally determi-
nable function of c5. As

= m1/V (14)

where m is constant, also c; is a known function
of ¢5. We may express these functions by the
series expansions

y=1y(l+ac5+...) (15)
V=V0(1+ﬂ1Cl3+. . ) (16)
a=c/(1+Bic5+...) (17)

where @, and B, are experimentally determinable
constants.

We also introduce an analytic expression for
u5>. We may use the usual representation via the
activity coefficient or, which is more convenient,
the virial expansion of the osmotic pressure:

pa=(3) -v)'n’ (18)
where
RT
= ——cy+ A+ .. (19)
M,

represents the osmotic pressure of the ambient
solution, measured against pure solvent (M; is
the molar mass of solute and A, the second virial
coefficient).

Inserting eqn. (12), together with eqns. (15)-
(19), into eqn. (2) and integrating between the
limits ¢3=0 and c3=c, we obtain

dcj °
dn’ 2 dp
—7dC’+ —_ 20
dC3 3 l;‘; (4] ( )

where py is the pressure in the gel phase for c¢53=0.

The second integral in eqn. (20) may be
evaluated by term-by-term integration. Carrying
out the integration to terms of second order, and
evaluating the last integral by the mean value
theorem for integrals, we obtain

vh (1-c§v)) RT 2
= 2oy | e+ By +
Ay (VZ yo) A 2€
A
{1+ Bibet) @1
1
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where

B,

RT (1%
o) +

2M;

st ), B (v
RT V2 1-¢ 1Vi\Vy

and

(22)

Ap=p-py and 0=0<1.

This equation relates the partition coefficient
¥, to changes in the chemical potential of the gel
network and the hydrostatic pressure in the gel.
The latter term is of particular interest, because
partition of solutes induced by the “swelling
pressure” of gels has been a controversial subject
for a long time.!”> However, in freely swelling
flexible gels the hydrostatic pressure in the gel
phase must equal the ambient hydrostatic pres-
sure. This may be concluded from general ther-
modynamic  criteria  for  heterogeneous
equilibria,'! a more direct proof being given in
the next section. Thus, for freely swelling gels
p=po=p’ (23)
and the pressure term vanishes in eqn. (21). In
this case the partition coefficient is directly
related to the change of the chemical potential of
the gel matrix.

It is of some interest to consider a completely
inert gel matrix, representing an “ideal” gel
system. Then

and from (21) it follows
Y
o= (25)

the last equality indicating that for a non-
interacting gel matrix the partial specific volumes
in the two phases have to be equal. In this case
the solution inside the gel is identical with the
ambient solution (from eqns. (3), (5) and (11) we
obtain ci/c,=c%/c5). More generally we have

’

Yo> % implies Ay, <0, (26)
2
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!
Yo< %2— implies Ay, >0 (27)
2
As an example of the latter relation we may
consider partition equilibria in charged gels (the
present treatment is applicable to a polyelectro-
lyte gel-simple salt solution, where the constit-
uents have one ion in common, since the system
has three components in Gibbs sense). Because
of the Donnan exclusion we always have y<l1.
Thus Au,>0, the chemical potential of the gel
network—fixed ion system increasing on addition
of a simple salt.
For dilute solutions we may write

AC1+

aﬂl)
0

A'ul = (_

aCl
a 0
(_u,_) Ap._._(%) iaps
op /o dcy/p Vo

9
(—ﬂ) A03+
8C3 0

op
(8—c§)0A63+lep

(28)
where we have used eqn. (14) to obtain the last
equality.

If y=0, Ac;=0, and we obtain from (21), (23)
and (28)

C+BzC2

_( a_,ﬂ) Syt (l—c;}vl)RT 29
0

aCl V() Va (o] M3

This is the basic equation for gel-
osmometry.'15 It shows that for impermeable
gels the volume change of the gel is a direct
measure of the osmotic pressure of the ambient
solution. However, the method is not absolute,
i

as the value of ( ) is unknown and has to
0

C1
be determined by calibration. Also, the second
order coefficient B, differs from the second
osmotic virial coefficient. With permeable gels
interference from the solute term in eqn. (28)
cannot in general be neglected and the volume
change is no longer a measure of the osmotic
pressure.

If in partition experiments the volume of the
gel is kept constant (c;=c%) pressure changes in
the gel phase have to be considered. In this case
the full eqn. (21) applies, with p;=0. In particu-
lar, for an impermeable gel y=0, and Ay =v,Ap
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in eqn. (28). The exact integration of eqn. (20)
then yields

Ap=-(v3/vy))n’ (30)

Swelling equilibria in pure solvent. We will in
this section consider swelling equilibria and
pressure-volume relations for a gel immersed in a
pure solvent. To derive the thermodynamic
stability conditions for a gel, which has reached
its equilibrium volume of swelling, we imagine
that the gel is perturbed by changing its volume
by a small amount §V. The work done on the gel,
ow, equals the change of Gibbs free energy for
the gel-solvent systém:

Y
dw=6G= - [ (p-p)dV=—(p—p’)6V (31)
0
where, by the mean value theorem
p=po+6 ﬂ)—6V 0=<0=<1 (32)
0 dV ) - -

From eqn. (2) we obtain (since the solvent is
still in equilibrium with the strained gel, du,=0)

d

dp—_-CIdﬂ]:Cl[( a”l )dC1+V1dp] (33)

Cy P
Or, with the aid of eqn. (14)
d_P=___021_(3_#_1)
v TV aal, (34)
Thus

6ci ( O )
=— —p' V4 ——— ] —— 2

8G=~(po-p)OV+ s 5|0V (9)

At equilibrium G has a minimum, which
implies

5G>0 (36)
for all variations 8V. This is true only if
3 )
-’ 7
Po p,(ac1 >0 (37

P

Thus, in a flexible gel at equilibrium the
hydrostatic pressure is necessarily equal to the
surrounding pressure. Furthermore, from eqns.

(34) and (37) it follows that the pressure increases
on compression and decreases on dilation. The
straining of a gel thus induces pressure changes
which may be designated the “swelling pressure”
of a gel. In unstrained gels the term has no
physical significance.

It should be noted that the above relations are
valid for a gel where the components are truly
integrated into a single homogeneous phase. This
is a prerequisite for the Gibbs-Duhem equation
to be valid. If all the straining forces are balanced
by stresses set up in the gel matrix (like in a
system of springs) the latter has to be considered
as a separate phase. In this case the change in its
chemical potential is not coupled to pressure
changes, the hydrostatic pressure in the pore
liquid in general being equal to the external
pressure. Such a gel is, of course, heterogeneous.

Finally, it should be noted that from the
thermodynamic point of view, a gel should
always be considered in conjunction with its
solution phase. This is an immediate conse-
quence of the Gibbs phase rule:
f=r+2-g (38)
where f is the number of degrees of freedom, r
the number of components and g the number of
phases. For a polymer solution, prior to cross-
linking, r=2 and g=1. Thus f=3, representing an
independent choice of temperature, pressure and
concentration. After crosslinking one degree of
freedom is lost, as the concentration of the gel
can no longer be independently changed. Thus
f=2 and g=2 in eqn. (38). This means that a gel
should always be considered as being in contact
with a solution phase (syneresis seems to be a
manifestation of this tendency). Vapor phase
equilibria with homogeneous gels therefore seem
to be inadmissible thermodynamically, leading
inevitably to the formation of heterogeneities in
the gel.
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