Stabilizing Effects by Mg\(^{2+}\) on Na,K-ATPase*  

SVEN MÅRDH

Institute of Medical and Physiological Chemistry, Biomedical Center, University of Uppsala, Box 575, S-751 23 Uppsala, Sweden

Mg\(^{2+}\) is required for the activity of Na,K-ATPase.\(^1\)\(^,\)\(^2\) It is required for the phosphorylation by ATP as well as by P\(_i\).\(^3\)\(^,\)\(^4\) When added before P\(_i\), Mg\(^{2+}\) was reported to inhibit phosphorylation by P\(_i\).\(^4\) In contrast, addition of Mg\(^{2+}\) early, or late, in the phosphorylation by ATP had no detectable effect on the initial rate of phosphorylation.\(^5\) Addition of a high concentration of a chelator of divalent cations, 1,2-cyclohexylenedinitrilotetraacetic acid, to the phosphoenzyme decreased the rate of dephosphorylation.\(^6\) This result may indicate that Mg\(^{2+}\) is bound to the phosphoenzyme and that it plays a role in the dephosphorylation step. Recently, evidence for an Mg\(^{2+}\) -induced conformational change at the ATP-binding site of the ATPase was demonstrated with a photoreactive ATP-analogue.\(^6\) No direct studies on binding of Mg\(^{2+}\) to Na,K-ATPase have been reported.

The present paper describes two different conditions where Mg\(^{2+}\) is important in stabilizing the enzyme activity. The first condition is protection against inactivation of the dephosphoenzyme at acidic pH. The second condition is protection against inactivation by N-ethyl-5-phenylisoxazolium-3'-sulphonate (Woodward's reagent K) which is a reagent modifying carboxyl groups in proteins.\(^7\)

**Experimental.** Na,K-ATPase was prepared from pig kidney as described by Jørgensen.\(^8\) The sodium salt of ATP and Tris salt of p-nitrophenylphosphate (pNPP) were obtained from Sigma. The ATP was converted to its Tris salt as previously described.\(^3\) N-Ethyl-5-phenylisoxazolium-3'-sulphonate (Woodward's reagent K) was purchased from Aldrich Chem. Comp., Inc. ATPase assay and the technique of testing the stability of the enzyme at various pH were previously described.\(^9\) p-Nitrophenolphosphatase (pNPPase) was assayed in 3 mM MgCl\(_2\), 10 mM KCl and 3 mM pNPP in 20 mM imidazole – HAc buffer, pH 7.5. Incubation volume was 0.5 ml. The reaction was stopped by the addition of 25 µl of 50 % trichloroacetic acid. One ml of 0.5 M Tris base was then added and the absorbance at 410 nm was measured. Protein was measured according to the method of Lowry et al.\(^10\)

Chemical modification with Woodward’s reagent K was carried out at 20°C. About 10 µg of enzyme protein in 175 µl of 15 mM 2-morpholinoethanesulfonic acid (MES) buffer, pH 5.5, was incubated with 25 µl of 5 mM Woodward’s reagent K which was prepared immediately before use in 1 mM HCl. To the control 25 µl of 1 mM HCl without the reagent was added. Exactly 2 min after the addition of Woodward’s reagent K, 2.0 ml of cold 30 mM histidine buffer, pH 7.2, was added. Samples were then assayed for Na,K-ATPase and pNPPase.

**Results and discussion.** Na,K-ATPase was incubated at various pH at 30°C for 60 min. The pH was then adjusted to 7.5 and the enzyme activity was assayed. At low pH the Na,K-ATPase activity and the pNPPase activity were inactivated (Fig. 1). At pH 4 only a few per cent of the original activities remained. At pH 5 the remaining activity was dependent on whether Mg\(^{2+}\) was present or not. Addition of 7.5 mM Mg\(^{2+}\) during the incubation at pH 5 protected the enzyme against inactivation.

---


0302-4369/82/040269-03S02.50  
© 1982 Acta Chemica Scandinavica

---

**Fig. 1.** Stability of Na,K-ATPase and pNPPase at various pH. MgCl\(_2\) was omitted (○), or 7.5 mM MgCl\(_2\) was included in the incubation mixture while the enzyme was treated at various pH (●). Final concentration of MgCl\(_2\) in both the Na,K-ATPase assay and in the pNPPase assay was 3 mM. Relative activities are presented.
This concentration is at least ten times higher than the $K_{0.5}$ of Mg$^{2+}$ in the Na,K-ATPase reaction.\textsuperscript{11}

After chemical modification of the enzyme with Woodward's reagent K under standard conditions in the absence of Mg$^{2+}$, about 75% of the original Na,K-ATPase and pNPPase activities were retained (Fig. 3). In the presence of Mg$^{2+}$ protection against inactivation by the reagent was observed. At 50 $\mu$m Mg$^{2+}$ all activity assayed as Na,K-ATPase was retained. At a further increase of Mg$^{2+}$ the activity decreased again. At 1 mM Mg$^{2+}$ about 80% of the original activity was retained. Similar to the effect on the Na,K-ATPase activity, Mg$^{2+}$ protected the pNPPase half-maximally at 10 $\mu$m concentration (Fig. 3). The activity of pNPPase, however, was not only protected against inactivation. At 50 $\mu$m Mg$^{2+}$ and higher concentrations, pNPPase reached activities which were about 180% of the activity of enzyme not treated with the reagent. Previously, Woodward's reagent K has been used to modify carboxyl groups in proteins.\textsuperscript{7} It is also known to act as a bifunctional cross-linking reagent.\textsuperscript{7} A protection of Mg$^{2+}$ against inactivation by this reagent might be explained by protection of some essential carboxyl groups at the active center of the enzyme e.g. the carboxyl group of Asp which is phosphorylated by ATP.\textsuperscript{12} The increase of activity as observed for pNPPase is, however, more difficult to explain. Maybe the combination of Mg$^{2+}$ and Woodward's reagent K resulted in the stabilization of a protein structure which has a high catalytic efficiency. Such a structure could be a functional dimer of $\alpha$-subunits of the Na,K-ATPase with equally active (pNPPase) subunits in contrast to the native enzyme where these subunits might be out of phase.\textsuperscript{13} Further experiments are necessary in order to find out the mechanism by which Mg$^{2+}$ and the reagent modify the enzyme. Since the effect of Mg$^{2+}$ was observed already at low concentrations, which were similar to the $K_{0.5}$ for Mg$^{2+}$ in the Na,K-ATPase reaction, its observed effect probably involved binding to a site which normally binds the ion during hydrolysis of ATP. Contrarily, a high concentration of Mg$^{2+}$ was required in order to stabilize the enzyme at slightly acidic pH. This stabilization might be the result of a general stabilization of the protein structure in the membrane.

Acknowledgement. This investigation was supported by the Swedish Medical Research Council, Project 13X-4965.


Received November 27, 1981.