Short Communication

The Crystal Structure of Oxonium Aquapentachloroferrate(III)

INGER SØTOFTE and KURT NIELSEN

Structural Chemistry Group, Chemistry Department B, DTH 301, The Technical University of Denmark, DK-2800 Lyngby, Denmark

As part of an investigation of benzotriazole complexes \(^{1-3}\) an attempt to prepare an iron benzotriazole compound was made. Unfortunately, benzotriazole did not coordinate to iron, and instead the present complex was precipitated.

Orange crystals of \((\text{H}_2\text{O})_3[\text{FeCl}_3(\text{H}_2\text{O})]\) were precipitated by mixing \(1.5 \times 10^{-4}\) mol iron(III) chloride hexahydrate in 4 ml 2 M hydrochloric acid and \(3 \times 10^{-3}\) mol benzotriazole in 4 ml acetone. Determination of the possible space groups and the data collection were carried out as described in Ref. 1. The dimensions of the crystal were \(0.08 \times 0.05 \times 0.03\) mm. The structure was solved by Patterson technique.\(^4\) The references to the atomic scattering factors and the refinement technique are those used in Ref. 1. However, the atomic scattering factor for the oxonium ion was calculated \(^5\) as

\[
f_{\text{H}_2\text{O}^+} = f_\text{O} + 2r \sin(4\pi r s)/4\pi rs,
\]

where \(r = 1.00\) Å and \(s = \sin \theta/\lambda\). Thus, the hydrogen atoms in \(\text{H}_2\text{O}^+\) are not located. The space group \(Pcmm\) was assumed in all calculations. The refinement confirms that this choice is correct. Crystal data and \(R\)-values are listed in Table 1. The final positional parameters with standard deviations are listed in Table 2. Lists of thermal parameters and observed and calculated

\[
\begin{array}{cccc}
\text{Table 2. Final atomic coordinates} \times 10^4. \text{ The estimated standard deviations} \times 10^4 \text{ are given in parentheses. The values of the hydrogen atom are multiplied by } 10^3. \\
\hline
\text{Atom} & x & y & z \\
\hline
\text{Fe} & 6896(1) & 2500 & 3837(1) \\
\text{Cl1} & 4280(2) & 2500 & 2770(1) \\
\text{Cl2} & 8982(1) & 2500 & 2520(1) \\
\text{Cl3} & 6761(1) & 106(1) & 3952(1) \\
\text{Cl4} & 9531(2) & 2500 & 4941(1) \\
\text{O} & 5023(6) & 2500 & 5035(3) \\
\text{H}_2\text{O}^+ & 1597(4) & 4992(3) & 3585(2) \\
\text{H} & 456(6) & 189(4) & 528(3) \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Table 3. Bond distances (Å) and bond angles (°) with estimated standard deviations.} \\
\hline
\text{Atoms} & \text{Distance or angle} \\
\hline
\text{Fe} – \text{Cl1} & 2.352(1) \\
\text{Fe} – \text{Cl2} & 2.328(1) \\
\text{Fe} – \text{Cl3} & 2.383(1) \\
\text{Fe} – \text{Cl4} & 2.394(1) \\
\text{Fe} – \text{O} & 2.107(4) \\
\text{O} – \text{H} & 0.76(4) \\
\text{Cl1} – \text{Fe} – \text{Cl2} & 90.61(5) \\
\text{Cl1} – \text{Fe} – \text{Cl3} & 90.58(2) \\
\text{Cl1} – \text{Fe} – \text{O} & 89.77(12) \\
\text{Cl2} – \text{Fe} – \text{Cl3} & 94.41(2) \\
\text{Cl2} – \text{Fe} – \text{Cl4} & 90.13(5) \\
\text{Cl3} – \text{Fe} – \text{Cl4} & 89.36(2) \\
\text{Cl3} – \text{Fe} – \text{O} & 85.59(2) \\
\text{Cl4} – \text{Fe} – \text{O} & 89.49(11) \\
\end{array}
\]

0302-4377/81/100821-02$02.50
© 1981 Acta Chemica Scandinavica
structure factors may be obtained from the authors on request.

Description and discussion of the structure. Bond lengths and bond angles with estimated standard deviations are listed in Table 3. The compound is built from H_2O^+ and $[\text{FeCl}_4(\text{H}_2\text{O})]^2-$ ions. The Fe atom, which lies on a mirror plane, has a distorted octahedral coordination to one O atom and five Cl atoms, the O atom and three of the Cl atoms being positioned on the mirror plane (Fig. 1). The structure is isostructural with $(\text{NH}_4)_2-[\text{FeCl}_4(\text{H}_2\text{O})]$.

The Cl–Cl distances in the complex fall within the range of 3.327 – 3.457 Å. The Cl–O distances are 3.152 Å and 3.175 Å. The shortest distances from the H$_2$O$^+$ ion are 3.304(3) Å to Cl$_4(1-x, \frac{1}{2}+y, 1-z)$, 3.308(3) Å to Cl$_1$ and 3.364(3) Å to Cl$_2(-\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}-z)$. The shortest distances from O in H$_2$O are 3.193(3) Å to Cl$_3(1-x, -y, 1-z)$ and Cl$_3(1-x, \frac{1}{2}+y, 1-z)$. Thus, the strongest hydrogen-bonding interactions are between the complex ions, while the hydrogen-bonding interactions described by the H$_2$O$^+$–Cl distances are somewhat weak compared with those found in other compounds.

Acknowledgement. This work was supported by a grant from the Danish Natural Science Research Council.

Received March 30, 1981.