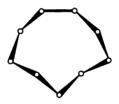
On the Crystal Conformations of Two Nine-membered Rings: Cyclononaneoxime and Cyclononanephenylsemicarbazone (at $-150\,^{\circ}$ C)

P. GROTH

Department of Chemistry, University of Oslo, Oslo 3, Norway


Crystals were grown at room temperature and cooled rapidly to about $-150\,^{\circ}\text{C}$, the temperature at which data were collected on an automatic four-circle diffractometer. Both nine-membered rings have a conformation which may be described as either quinquangular $[1\,2\,2\,2\,2]$ or triangular $[2\,2\,5]$. There is no resemblance at all to the triangular type $[3\,3\,3]$ with the lowest calculated enthalpy.

Strain-energy minimization calculations ¹⁻⁴ show that the lowest-enthalpy conformation of cyclononane is of the triangular type [3 3 3]:*

The same conformation (with D_3 symmetry) has also been established experimentally ⁵ by low-temperature ¹³C NMR. In the crystals, the structures of cyclononane and cyclononanone are highly disordered.⁶ Only two crystal structure determinations of saturated nine-membered rings

have been reported: cyclononylammonium bromide ⁷ and the 1:1 addition compound mercuric chloride-cyclononanone.⁸ In both, the ring conformation could be defined as quinquangular [1 2 2 2 2] (or alternatively as triangular [2 2 5]):

[12222] (or [225])

This conformation has no similarity at all to the [3 3 3] conformation, and the difference in strain energy amounts to something between 9.2 kJ/mol and 12.1 kJ/mol. 1,3,4 In order to supplement the conformational evidence for the saturated ninemembered ring, single crystal X-ray analyses of the oxime, $C_9H_{17}NO$, and the phenylsemicarbazone, $C_{16}H_{23}N_3O$, have been carried out.

Crystal data for the two compounds are given in Table 1. Intensities were measured (at ca.-150 °C) on a four-circle automatic diffractometer (Mo $K\alpha$ -radiation) with $2\theta_{max} = 50^{\circ}$. No corrections for absorption or secondary extinction were made (maximum crystal size $0.3 \times 0.3 \times 0.2$ mm). The structures were solved by direct methods 9 and refined by full-matrix least squares technique. 10.* Weights in least squares were obtained from the

^{*} A shorthand notation for conformational type, consisting of a series of numbers within brackets, each giving the number of bonds in one "side", starting with the shortest. The direction around the ring is so chosen that the following number is the smallest possible.

^{*} All programs used (except those for phase determination) are included in this reference.

Table 1. Crystal data for (I): cyclononaneoxime and (II): cyclononanephenylsemicarbazone.

	Space group	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Z	D _m g cm ⁻³		Number of observed reflections
<u>I)</u>	$P\overline{1}$	5.633(1)	7.217(2)	12.180(5)	81.14(3)	78.94(2)	72.55(2)	2	1.12	1.09	760
(II)	$P2_1/n$	14.514(4)	6.208(2)	16.600(4)	90.0	102.75(2)	90.0	4	1.21	1.20	1572

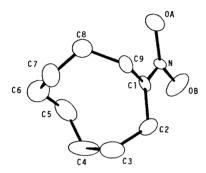


Fig. 1. Schematic drawing of the cyclononaneoxime molecule.

Table 2. Final fractional coordinates with estimated standard deviations for cyclononaneoxime. Hn,1 and Hn.2 are bonded to Cn.

АТОМ	x	Y	z
OA	.2170(17)	1054(12)	.9097(7
08	.0010(70)	.2186(58)	.9953(31
N	.2031(16)	.0885(11)	.9303(6)
Cl	.3826(18)	.1548(14)	.8782(7)
C2	.3723(19)	.3593(16)	.8939(9)
С3	.4224(24)	•4907(17)	.7909(11
C4	.2050(21)	.5599(16)	.7228(11
C5	.1293(22)	.4156(18)	.6707(10)
C6	.2916(23)	.3140(18)	.5794(11
C7	.5553(21)	.1661(18)	.5972(9)
С8	•5568(22)	.0074(16)	.6844(9)
Ç9	.6067(18)	.0296(14)	.8081(8)
H21	•500	.349	.943
H22	.200	.420	.934
H31	•578	•419	.745
H32	•451	.607	.817
H41	• 256	•654	•659
H42	.054	.630	.772
H51	033	.484	.642
H52	.102	.309	•732
H61	•324	•418	.519
H62	•193	.239	•553
H71	•663	.243	.614
H72	•632	.109	.524
н81	•689	111	•656
H82	•387	019	.694
H91	•747	.090	.798
H92	•654	103	.850

standard deviations in intensities, $\sigma(I)$, taken as $\sigma(I) = [C_T + (0.02 C_N)^2]^{\frac{1}{2}}$, where C_T is the total number of counts, and C_N the net count. The form factors used were those of Hanson *et al.*¹² except for hydrogen. Standard deviations in bond distances and angles and dihedral angles are calculated from the correlation matrix of the final least square refinement.

CYCLONONANEOXIME

The crystal quality was very poor and the solution of the phase problem was not quite straightforward. A seven atom fragment was misplaced (being connected to itself by the centre of symmetry). By "moving" the fragment stepwise through the cell, and (for each step) calculating the R-value for 100 low-angle reflections, a faint minimum (R=49%) at $\Delta x=0.32$, $\Delta y=0.08$, $\Delta z=0.42$ was obtained. With the phases corresponding to this position of the fragment, successive weighted Fourier syntheses revealed the rest of the atoms. In fact, one extra peak appeared, symmetrically situated with respect to the C1=N bond at a distance of about 1.4 Å from N (Fig. 1).

Anisotropic temperature factors were used for oxygen, nitrogen and carbon atoms. Methylene hydrogen atoms (calculated positions) were included in the structure factor calculations with a common isotropic temperature factor $B = 2.5 \text{ Å}^2$, but not refined. When discarding the 12th peak in the Fourier map, refinement converged at $R \sim 21\%$. An oxygen atom with multiplicity factor, G = 0.15, was introduced at the site of peak No. 12 and the Gvalue of the original O-atom was reduced to 0.9. Least squares refinement with these occupancy factors included as parameters led to a final Rvalue of 13.8% ($R_w = 10.7\%$). Maximum r.m.s. anisotropic thermal amplitudes range from 0.21 to 0.37 Å. The multiplicity factors arrived at were G(OA) = 0.81 and G(OB) = 0.19. It is thought that

Table 4. Final fractional coordinates with estimated standard deviations for cyclononanephenylsemicarbazone. Hm is bonded to Cm (in the phenyl ring). Hn,1 and Hn,2 are bonded to Cn (in the nine-manhead ring). HN, is bonded to M.

the																																																	
(ii)		6	2:	2:	=	=	=	=	::	•	2	=	=	2	2	=	-	:=	::	3	2	2	=	7	=	=	=	: :	3:	7	=	2	=	2	7	:=	::	3:	=:	=	=	=	=	2	:=	: =	::	3:	-
to Cn	7	4977	44920	7 4004	3300	58720	49140	5555	8668	2000	2072	9763	,7025(6526(5871(4996	27461	27201		0017	1499	1518	,2132(.488	438	609	5400	704		600	,579(. 558(.716(.687	7940	761		200	024	910	.574(.503	338	3150	2110	100		1001	1111
nded 1		•	•	•	•	•	•	•		•	•	•	•	٠	•	•	•	•	•	•	•	•	•																										
bor .		6	? i	3	ŝ	7	4	4	1	? ;	9	ີດ	3	4	€	4	4	3	•	•	3	₹	Ŧ	4	6	6	4	3	? :	7	₹	ŝ	4	4	4	:4	•	?	3	ຄ	2	4	4	6	3	5	;;	7	?
(in the phenyl ring). Hn,1 and Hn,2 are bonded to Cn (in the membered ring). HNm is bonded to Nm.	>	•,1002	2003	2012	. 8383	5073(69100	7315		1000	70000	3001	. 4050(34180	5848	.0436	1000			2445	*,3896	, 1876	0415	.827	.667	765	871			1004	, 229	,278(.349	131	566	192		252	500	,657	,475(1980	1650	344	588	408			• 1001
and bond		3	2	2	-	-	:=	::	3:	2:	-	a	=	-	2	=	::	30	3:	2	-	-	-	=	:2	=	::	::	⊋;	⊋	=	=	2	=	:=	::	3:	≘ :	-	=	2	=	=	:=	:=	::	3:	⊋:	2
Hn,1 Vm is	×	0073(1463	9820	.1079(.16920	2396	1225	2000	70000	.3/490	3000	,2826(1838	1351	96320	1000	24000		90/00	1238(1642(1580	1027	244(307	478		000	410(.427(.316(428	361	201	. 4		141	187	.142(9656	.056(1426	837	946	200		200	101.
ring) g). H]																																																	
d rin	ATOM	0	Ž	2	r	ວ	S		33	3 (S	ဗ	င်	8	6 0	C 18	:	::	ייי	213	C14	25	C 16	5	122	EH	2	2	1	142	H51	152	H61	H62	17	100	2	2	182	16 1	H92	HN2	NN	H	. I			11	01
he pl																																																	
(in the mem																																																	
vith				<u>(</u>	=	2)	iς	i 6		2								5	=	1			12																										
es •		•€		1.43	1.50(1.49(c (1.62					6	-] /• (22.) 17	3.		117.	•																									
angl					÷	-	-	-	<u>:</u> .	-								Ξ	Ξ	=	-	-	-	•																									
3. Bond distances and angles and dihedral angles with ted standard deviations for cyclononaneoxime.		ñ		z	نج	63	. ע	3.5	- {	9								ວ	65	9	7	,	ָ ֪֖֖֖֖֞֓֓֓֓֓֞֝֞֝֓֓֓֓֞֝֞֝֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֓֡֓֡֓֡֓֓֡֓֡֓֓֡֓֡֓֡֓	S								=	:=		÷ 6	ũ	2	ર	=	2	1								
dihe nane		NISTANCE		1		,	1								ι	نِد			1				1 1							઼		2	74.				Š.	96. (5.	77.	-104.	•							
pun		10		č	ប	Ç	; ;	5 6	8	č						ANGLE			:				35									u	, ,-	,		ĭ `	•	υ,	ĭ	,-	-	•							
es so	•																						5 6									,	2.4	Ų	? ,	Q Į		œ	6		د	ļ							
ang for																														ה ה	 	,	, ,	, (,	,		•							
and ions				7	1	: =	÷ 6	: i	2	<u>ر</u>								2	<u> </u>	1	1	=	12	: :	2					ANGLE		٥		ì		ე ;	ç	Ç	80	ဥ	5	,							
ces a		•€								1.44(_		116.		7	4		121		•					DIHEDRAL	!	-	. 0	; ;			ı	9	- 1	00	400								
stan d d				-	-	-		•	-	-								Ξ	Ξ	Ξ		-	1 -		=					DIHE		5	٠ (,															
d di ndar		ų		7	7	Ģ	۲. :	3	9	æ								こ	<u>გ</u>	63	80	ָ עַ	9 5		Š							ę	3 5								8	}							
Bon. sta		DISTANCE			1	1			,						1	u				•		•		ı	ı																								
3.		DIS		Ø	z	7	3	3	S	C						אַפּר		Z	ប	S	ဦ	Š	3 2	3 6	3																								

Table 5. Bond distances and angles with estimated standard deviations for cyclononanephenylsemicarbazone.

	DIST	4 11 (CF.		(Å)				ſ.	131	AN(DE.	(Å)		
0 - C10 N1 - C1 N3 - C10 C1 - C2 C2 - C3 C4 - C5 C6 - C7 CR - C9 C12 - C13 C14 - C15					228 289 368 506 533 526 521 538 384 382	(3 (3 (4) (4) (4) (4) (3))))))			01000	11 - 13 - 13 - 15 - 11 - 15 -	1.385(3) 1.369(3) 1.413(3) 1.515(3) 1.524(4) 1.524(4) 1.540(3) 1.347(3) 1.383(3) 1.382(3)					
	ANGL	Ξ				(°)				į	NGL	(°)					
N2 - N1 - N2 - N3 - C1 - C1 -	C10 C11 C2 C9 C4 C6 C8 C11 C13		C1 C2 N3 C12 C3 C8 C5 C7 C9 C16 C14		120 118 116 115 123 117 115 118 117 116 119 121	6(7(3(5(9(8(0) 2(20 20 20 20 20 20 20 20 20 20 20 20 20 2		C2 C4 C6 C11 C11		N2 C1 N3 C11 C3 C5 C7 C12 C16		C10 C9 C11 C16 C9 C4 C6 C8 C13 C15	120 124 127 117 118 116 116	.8(2) .3(2) .4(2) .2(2) .4(2) .2(2) .8(2) .1(3)		
				DI	HEDI	RAL	AN	GLE			(۰,					
			C3		C1 C2 C3 C4 C5 C6 C7 C8		03 04 05 06 07 08 09		C3 C4 C5 C6 C7 C8 C9 C1 C2	-1	56. 67. 60. 70. 68. 57. 01. 77.	3(7(7(5(2(1(9(3) 3) 3) 3) 4) 3)				

the bad crystal quality has the main responsibility for the poor agreement between observed and calculated structure factors, and that these findings suggest that the crystals are built up of a mixture of two forms of cyclononaneoxime molecules, differing only in the N-OH group orientation. About 81 % of the molecules have oxygen at the site of OA (Fig. 1), while in 19 % it is situated at the OB position. A corresponding structure has been found in the crystals of cycloundecaneoxime 11 (with G-values 0.85 and 0.15). Dimers are formed by hydrogen bonds OA - N' and OB - N', both 2.75 Å long. Final fractional coordinates with estimated standard deviations are listed in Table 2. The bond distances and angles of Table 3 are normal within error limits, and the dihedral angles show that the ring conformation is [12222] corresponding to the earlier findings.^{7,8}

CYCLONONANEPHENYL-SEMICARBAZONE

Hydrogen atom positions were calculated. Anisotropic temperature factors were used for O, N and C atoms. Refinement converged at R=4.0% ($R_w=3.4\%$). Final fractional coordinates with estimated standard deviations are given in Table 4. Maximum root mean squares anisotropic thermal amplitudes range from 0.15 to 0.22 Å. Fig. 2 is a schematic drawing of the molecule, showing the numbering of atoms. The bond distances and angles, listed in Table 5, have normal values, and dimers are formed by hydrogen bonds O-N2'=2.898(3) Å long. The torsional angles of Table 5 show that the ring conformation [1 2 2 2 2] again is preferred.

The fact that all four cyclononane derivatives so

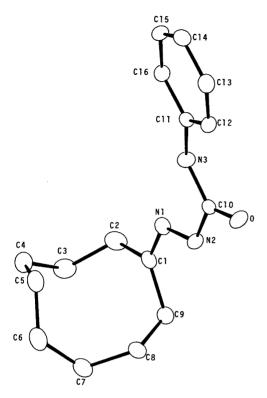


Fig. 2. Schematic drawing of the cyclononanephenylsemicarbazone molecule.

far examined by X-ray analysis have the [12222] conformation would seem to indicate that this is the preferred conformation of the saturated ninemembered ring with one sp_2 carbon atom.

Lists of thermal parameters and observed and calculated structure factors are available from the author.

REFERENCES

- 1. Hendrickson, J. B. J. Am. Chem. Soc. 83 (1961) 4537; 86 (1964) 4854; 89 (1967) 7036.
- 2. Wiberg, K. B. J. Am. Chem. Soc. 87 (1965) 1070.
- 3. Bixon, M. and Lifson, S. *Tetrahedron 23* (1967) 769.
- 4. Dale, J. Acta Chem. Scand. 27 (1973) 1115.
- Anet, F. A. L. and Wagner, J. J. J. Am. Chem. Soc. 93 (1971) 5266.
- 6. Rudman, R. and Post, B. Molecular Crystals 3 (1968) 325.
- 7. Bryan, R. F. and Dunitz, J. D. Helv. Chim. Acta 43 (1960) 3.

Acta Chem. Scand. A 34 (1980) No. 8

- 8. Dahl, S. and Groth, P. Acta Chem. Scand. 25 (1971) 1114.
- 9. Germain, G., Main, P. and Woolfson, M. M. Acta Crystallogr. A 27 (1971) 368.
- 10. Groth, P. Acta Chem. Scand. 27 (1973) 3131.
- 11. Groth, P. Acta Chem. Scand. A 33 (1979) 503.
- 12. Hanson, H. P., Herman, F., Lea, J. D. and Skillman, S. Acta Crystallogr. 17 (1964) 1040.
- Stewart, R. F., Davidson, E. R. and Simpson, W. T. J. Chem. Phys. 42 (1965) 3175.

Received April 16, 1980.