4,10-Bis(2-hydroxyethyl)-1,7-dioxa-4,10-diazacyclododecane. A Strong Calcium-binding Ligand

ERIK AMBLE and JOHANNES DALE
Kjemisk Institutt, Universitetet i Oslo, Oslo 3, Norway

During the last three years several research groups have described macrocyclic ligands containing side chains with additional donor groups. These have been prepared either to study enantioselective complexation of ammonium salts,1 to catalyse the thiolysis of amino acid ester salts 2,3 or to change the stability of their complexes as compared to the parent compounds.4,5

We now report the use of neutral N-hydroxyethyl groups to modify the binding properties of a macrocyclic ligand. The particularly good geometric fit of the twelve-membered ring for coordination to sodium6,7 and calcium8 as manifested in several 12-crown-4 complexes,

![Complexation constant diagram]

made us choose 1,7-dioxa-4,10-diazacyclododecane Ie as the parent compound. Using Richman and Atkins’ method, the disodium salt of N,N'-ditosyl-2,2'-diaminodiethyl ether 2b and diethylene glycol ditosylate 2e were condensed in DMF to yield 4,10-di-p-toluenesulfonyl-1,7-dioxa-4,10-diazacyclododecane 2f. Acid hydrolysis removed the tosyl protecting groups and the secondary amine Ie was isolated in 88% yield. Hydroxyethylisation with ethylene oxide in aqueous methanol at 0°C gave 41% of the title compound 1a.

The addition of increasing amounts of lithium and sodium perchlorate to a solution of ligand 1a in methanol displaced the 13C NMR chemical shifts of all carbon atoms upfield. These displacements are larger for the ring carbons than for the carbon atoms in the side chain, reflecting a change of the ring conformation upon complex formation.11 Evaluation of titration curves for the ring carbons (see Fig. 1) by an iterative least-squares procedure11,12 gave the complexation constants and the limiting chemical shifts δ_i of the complexes (see Table 1). The parent secondary diamine Ie showed only very small shift differences with these salts, and the complexation constants were estimated to be 1.

Since the accuracy of this method is limited for constants $K > 1000$, the binding properties of ligand 1a were also examined by pH-metric titrations in methanol—water (9:1). These results are summarized in Table 2.

The introduction of two hydroxyethyl side chains is thus indeed found to increase considerably the complex stabilities. This is presumably a consequence of the additional binding sites, but also the weaker solvation of tertiary as compared with secondary amine functions in the free ligand, may contribute to the favourable binding.14 The stability of the Ca$^{2+}$ complex is similar to that of cryptates,15 but the Ca$^{2+}$/Na$^{+}$ selectivity is different. Cryptand [2.1.1], which has the same number of donor atoms as the hydroxyethylated ligand 1a, shows an Na$^{+}$ preference of 55, whereas ligand 1a has a Ca$^{2+}$/Na$^{+}$ selectivity of 2000 and forms the most stable Ca$^{2+}$ complex known for uncharged monocyclic ligands.

In less polar solvents, where ion pairing occurs to a great extent, the hydroxyethyl groups may play a stabilizing role by forming hydrogen bonds to the anion. Thus one can well envisage using ligand 1a to extract calcium salts from water into nonpolar organic solvents.

Experimental. The melting points are uncorrected. IR spectra were recorded on a Jasco IRA-1 spectrophotometer and NMR spectra on a Varian A 60A or a Jeol JNM-FX60 Fourier Transform NMR spectrometer. MS data were obtained on an A.E.I. MS 902 spectrometer. The elemental analysis was carried out at Mikro-analytisches Laboratorium Ilse Beetz, 8640 Kronach, West-Germany.

Table 1. Complexation constants for 1a from analysis of 13C NMR titration curves.

<table>
<thead>
<tr>
<th>Salt</th>
<th>Resonance</th>
<th>δ_i(Hz)</th>
<th>$\Delta\delta$(Hz)</th>
<th>log K</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiClO$_4$</td>
<td>CH$_3$OH</td>
<td>593.5</td>
<td>41.0</td>
<td>2.8</td>
</tr>
<tr>
<td>CH$_3$N</td>
<td>366.1</td>
<td>53.2</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>NaClO$_4$</td>
<td>CH$_3$OH</td>
<td>594.3</td>
<td>39.6</td>
<td>3.4</td>
</tr>
<tr>
<td>CH$_3$N</td>
<td>375.4</td>
<td>43.3</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Complexation constants from analysis of pH titration curves.

<table>
<thead>
<tr>
<th></th>
<th>Li$^+$</th>
<th>Na$^+$</th>
<th>K$^+$</th>
<th>Ca$^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazao-crown 1a</td>
<td>2.4</td>
<td>3.6</td>
<td>2.0</td>
<td>6.9</td>
</tr>
<tr>
<td>Cryptand [2.1.1]</td>
<td>7.6</td>
<td>6.1</td>
<td>2.3</td>
<td>4.3</td>
</tr>
</tbody>
</table>

0302-4369/79/090698-03$\times0.25$
© 1979 Acta Chemica Scandinavica
Fig. 1. 13C NMR chemical shifts of the ring carbon atoms of Ia $\Delta \delta$ vs. relative LiClO$_4$ concentration. Similar curves were obtained with NaClO$_4$ (cf. Table 1).

Starting materials. Standard methods were used to prepare diethylene glycol ditosylate 2c 14 and N,N'-ditosyl-2,2'-diaminodiethyl ether $2b$ 18 from 2,2'-diaminodiethyl ether $2a$. 4,10-Ditosyl-1,7-dioxa-4,10-diazacyclocodecane 1b. The general procedure of Richman and Atkins 19 was used under the following specified conditions. The disodium salt of disulfonamide 2b was crystallized in 95% yield from abs. ethanol containing a 10% excess of sodium ethoxide. This salt (39.6 g, 0.08 mol) and diethylene glycol ditosylate 2c (33.5 g, 0.08 mol) were dissolved in dry DMF (400 ml), and the solution was stirred at 100°C during 12 h. After cooling and addition of water (2500 ml) the crude cyclic ditosyl compound 1b was recrystallized from ethanol (1500 ml); yield, 33.4 g (87%), m.p. 204 - 206°C (Lit.: 203 - 204°C). 13 MS, m/e (% rel. int.) 327 (63.0, M+), 155 (27.0, Tres), 91 (100.0, C$_5$H$_4$). 13H NMR (DMSO-d$_6$/acetone-d$_4$ (1:1)): δ 2.43 (6H, s, CH$_3$), 3.24 (8H, t, $J = 5.0$ Hz, CH$_2$N), 3.73 (8H, t, $J = 5.0$ Hz, CH$_2$O), 7.62 (8H, AA'BB'-system, aromatic protons).

1,7-Dioxa-4,10-diazacyclocodecane 1c. The cyclic ditosyl compound 1b (33.3 g, 0.07 mol) in H$_2$SO$_4$ (80 ml, 80%) was stirred at 100°C during 26 h. After cooling to 0°C the solution was first diluted with HCl (80 ml, 6 N), then with acetone (1000 ml). At -20°C the dihydrochloride of 1c crystallized; yield, 15.0 g (88%), m.p. 240 - 245°C. 1H NMR (D$_2$O): δ 3.38 (half of AA'BB'-system, CH$_3$N), 3.88 (half of AA'BB'-system, CH$_3$O).

4,10-Bis(2-hydroxyethyl)-1,7-dioxa-4,10-diazacyclocodecane 1a. The dihydrochloride of 1c (2.0 g, 8.1 mmol) was dissolved in water (10 ml) and the pH adjusted to 8 - 9 with aqueous NaOH (5%). The solution was diluted with water (10 ml) and methanol (40 ml) and cooled to 0°C. A solution of ethylene oxide (1.8 g, 40 mmol) in methanol (10 ml), which had previously been cooled with dry ice, was added and stirred at room temperature during 22 h. Water was then added and the solution extracted with CHCl$_3$ (4×50 ml). The organic phase was dried (MgSO$_4$) and the solvent evaporated. The remaining oily hydroxyethyl derivative 1a was crystallized as the hygroscopic dihydrochloride salt from abs. ethanol (15 ml) containing a few drops of conc. HCl; yield, 1.1 g (41%), m.p. 219 - 222°C. Anal. Found: C 41.94, H 8.62. Calc. for C$_{15}$H$_{17}$N$_2$O$_4$Cl, 5% H$_2$O: C 41.87, H 8.49 (weight of sample increased during weighing). 1H NMR (D$_2$O): 3.50 (t, $J = 7.0$ Hz, CH$_3$N (side chain)), 3.6 (half of AA'BB'-system, CH$_3$N (ring)), 3.9 (half of AA'BB'-system, CH$_3$O (r)), 3.99 (t, $J = 7.0$ Hz, CH$_3$O (s)). The dihydrochloride of 1a (1.10 g, 3.3 mmol) in water (5 ml) was adsorbed on a column containing the basic ion exchanging resin IRA-40(OH) and the diamine 1a was eluted with water (300 ml).
water was distilled off and the last traces were removed by azeotropic distillation with benzene (2 x 50 ml). After drying over P₂O₅, the yield of the free base 1a was 0.69 g (93 %). MS, m/e (% rel. int.) 262 (9.7, M), 244 (4.6, M – H₂O), 231 (13.5, M – CH₂OH). IR (film): 3280 (s, broad). ¹H NMR (CDCl₃): δ 2.68 (12H, complex, CH₂N), 3.64 (12H, complex, CH₂O, 4.68 (2H, s, OH). ¹³C NMR (15 MHz, CDCl₃): δ 60.4 (CH₂O (ring)), 59.5 (CH₂N (side chain)), 57.8 (CH₂O (s)), 54.8 (CH₂N (r)).

NMR measurements. The ligand solutions in methanol (1.50 ml) were 0.1 – 0.2 M. The ¹³C NMR chemical shifts δ were measured after each addition of solid perchlorate salt (TMS as internal standard). The accuracy of the δ determinations was ± 0.15 Hz. The temperature was held at 30 ± 1°C. Using the 1:1 stoichiometry observed for Li⁺ and Na⁺, the data from the titration curves were analyzed with a computer program based on Creswell and Allred's method.¹⁸ The error limits are about ± 0.2 for log K smaller than 3, but increase rapidly for higher values of log K.

pH-metric measurements.¹⁷,²⁰ The solvent was in all cases methanol – water (9:1). An automatic titration apparatus (TACUSSEL, units TT100, TT200 and TT300) was used. The reference electrode was connected with an ionic bridge containing 0.1 M NMe₅Br. The measuring electrode was a TACUSSEL electrode for aqueous solutions, which had been conditioned during several days in the solvent used. To determine the protonation constants of the ligand, solutions (4.0 ml) containing the doubly protonated ligand (0.005 M) and NMe₅Br (0.1 M) were titrated with NMe₅OH (0.110 M); pK₂ = 6.8 ± 0.1, pK₃ = 10.0 ± 0.1 at 25°C. The complexation constants were determined by titration of solutions (4.0 ml) containing the completely protonated ligand (0.005 M), the salt to be complexed (0.01 or 0.02 M) and NMe₅Br (0.1 M). The stoichiometry and the stability constants of the complexes were obtained by a computer analysis of the data from the titration curves (program SCO 75).²¹ The error limits are about ± 0.2 for log K ~ 4 and about ± 0.3 for log K ~ 7. Further experimental details have been described elsewhere.²²

Acknowledgement: We thank Prof. J.-M. Lehn for the opportunity to carry out the pH-metric titrations in his laboratory.

Received August 24, 1979.