Short Communications

The Absolute Configuration of the Cactus Alkaloid (—)-Calipamine *

RONALD W. WOODARD,^a J. CYMERMAN CRAIG ^a and JAN G. BRUHN ^b,**

^a Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143 and ^b Department of Pharmacognosy, Faculty of Pharmacy, Biomedium, Box 579, S-751 23 Uppsala, Sweden

The alkaloid (-)-calipamine was isolated from Coryphantha calipensis H. Bravo ¹ and shown to consist of one optical isomer. From NMR spectra, alkaline permanganate oxidation, and acid hydrolysis, calipamine was deduced ¹ to have the structure N-methyl-3,4-dimethoxy- β -methoxyphenethylamine 1. The natural alkaloid must, therefore, have the absolute configuration shown in 1 or its mirror image.

The circular dichroism (CD) curve for (-)-calipamine hydrochloride showed a positive

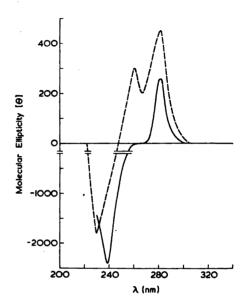


Fig. 1. Circular dichroism spectra of (-)-calipamine hydrochloride (---) and R-(-)-noradrenaline hydrochloride (---).

Cotton effect centered at 281 nm and a strong negative one centered at 239 nm. The compound (R-(-)-noradrenaline hydrochloride 2, with anidentical carbon skeleton and nitrogen and oxygen substitution pattern, had a very similar CD spectrum (Table 1). Since the nitrogen $n \rightarrow \sigma^*$ transition in both I and 2 has been abolished by protonation, the observed CD maxima correspond to the 1L_b and 1L_a transitions, respectively, of the benzene chromophore, asymmetrically perturbed by the center of asymmetry adjacent to the ring. As is usual when oxygen substitution is present in positions 3 and 4, the ${}^{1}L_{b}$ transition is shifted from 260 to 280 nm, while the ${}^{1}L_{a}$ transition is moved to 235 nm from 210 nm, both shifts being accompanied by a loss of fine structure. wavelength shift is due to an overlap of the π orbital of benzene with the nonbonding p orbital of the oxygen substituents in the ring.2

This was confirmed by the CD spectra of $R\cdot(-)\cdot 1$ -phenylethane-1,2-diol 3 and $S\cdot(-)\cdot 1$ -phenylethanol 4 (Table 1) which showed superimposable maxima centered at 268 (positive c.e.) and 216 nm (negative c.e.), with the normal

^{*} Paper No. 23 in the series "Optical Rotatory Dispersion and Absolute Configuration", and No. 31 in the series "Cactaceae Alkaloids".

^{**} Present address: Department of Toxicology, Karolinska Institute, S-104 01 Stockholm, Sweden.

Table 1. CD spectra and rotations.

Compound	CD maxima $[\theta]$ (nm) a							$[\alpha]^{25}_{D}$ (°)
	$^{1}L_{b}$	Band			$^{1}L_{a}$	Band		in 95 % ethanol
S-(-)-Phenylethanol 4 (D)	260 (267)	300 (260)	208 (255)	130 (249)	1561 (218)	-2342 (215)	-2863 (213)	-39.1 (c 1.92)
S-(-)-1-Methoxy-1- phenylethane $\mathcal{S}(D)$	246 (268)	220 (240)	163 (254)	79 (249)		- 352 (216) °		-119.2 (c 1.02)
R-(-)-Phenylethane-1,2-diol 3 (D)	178 (268)	193 (261)	131 (255)	92 (249)		-620 (218) c		-40.0 (c 0.294)
R-(-)-Noradrenaline HCl 2 (D)	449 (281)	300 (260)				-1795 (230)		-40.0 (c 0.034)
(-)-Calipamine·HCl I	260 (281)					- 2392 (239)		$-91.7 (c 0.01)^{b}$

^a In 95 % ethanol. ^b In absolute ethanol. ^c Lowest wavelength reached.

fine structure for both transitions. The weak $n\to\sigma^*$ transition of the additional OH group in 3 thus does not change the nature of the CD spectrum compared to 4. Further, methylation 3 of the OH group in 4 (silver oxide/methyl iodide) gave $S\cdot(-)\cdot 1$ -methoxy-1-phenyl-

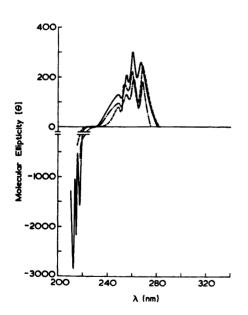


Fig. 2. Circular dichroism spectra of $R \cdot (-)$ -1-phenylethane-1,2-diol $(-\cdot -)$, $S \cdot (-)$ -1-phenylethanol $(-\cdot -)$, and $S \cdot (-)$ -1-methoxy-1-phenylethane $(-\cdot -)$.

ethane 5 with an almost identical CD spectrum (Table 1), indicating the lack of effect of the change OH→OCH, at the asymmetric center.

change OH→OCH₃ at the asymmetric center. Since compounds 2-5 all possess the identical (D) configuration, this also indicates the asymmetric center in (-)-calipamine to have the configuration shown in 1, i.e. (R). As (-)-1 was converted (formaldehyde/sodium borohydride) to (-)-N,N-dimethyl-3,4-dimethoxy-β-methoxyphenethylamine identical with the natural product 6 found in the same plant, it follows that the natural N,N-dimethyl derivative 6 also has the (R)-configuration. It is interesting that the closely related cactus alkaloid (-)-macromerine 7 was recently shown to have the (R)-configuration by chemical correlation with natural (R)-adrenaline δ.

Experimental. CD curves were measured with a Jouan Mark II spectropolarimeter at 25 °C in 95 % ethanol, and were recorded in terms of molecular ellipticity units $[\theta]$. Only CD maxima are given.

- Bruhn, J. G. and Agurell, S. J. Pharm. Sci. 63 (1974) 574.
- 63 (1974) 574.
 Moffitt, W. J. Chem. Phys. 22 (1954) 320;
 Petruska, J. J. Chem. Phys. 34 (1961) 1111.
- 3. Mislow, K. J. Am. Chem. Soc. 73 (1951) 4043.
- 4. Note, however, that the changing priority requirements of the sequence rule cause a change from the (R)- to the (S)-designation.
- Djerassi, C. and Bunnenberg, E. Proc. Chem. Soc. London (1963) 299.
- Brown, S. D., Hodgkins, J. E. and Reinecke, M. G. J. Org. Chem. 37 (1972) 773.

Received June 13, 1978.

Acta Chem. Scand. B 32 (1978) No. 8