

Received March 30, 1977.

Synthesis of [2]((2,5)-Thiopheneophenonetetraene or [24]Annulene Tetrathifal and OLOF WENNERSTRÖM

Department of Organic Chemistry, Chalmers University of Technology and University of Göteborg, S-402 20 Göteborg, Sweden

We have recently developed a convenient method for the preparation of various [2]-cyclophanes and related compounds from aromatic diazaalkanes and bistriphenylphosphonium salts of bis(halomethyl)arenes by Wittig reactions at low temperatures. Such cyclophanes are interesting starting materials for the synthesis of circulenes, helicenes, and annulenes. [2]Paracyclophetetraene and the thiophene and furan derivatives contain a conjugated perimeter with 24 electrons and could formally be regarded as derivatives of [24]annulene. Although reasonably planar, [2]paracyclophetetraene does not show a paramagnetic ring current, i.e. it is not paratropic. Among the bridged [18]annulenes, [18]annulene trioxide or [2]furanophenonetetraene has been characterized as aromatic. In the corresponding sulfur compound, the three sulfur atoms are too large to be accomodated in a planar conformation. Thus the compound cannot sustain a diamagnetic ring current over the perimeter, nor can [2]paracyclophetetraene.

The hetero bridged [24]annulenes have been studied less. Two isomers of [2]furanophenetetraene or [24]annulene tetroxide have been reported, both being similar to [24]annulene. Some uncertainty in the structural assignment (cis/trans isomerism) has made conclusions less firm.

![Scheme 1](attachment:image.png)

Scheme 1. I X=S, 2 X=O.

Molecular models show that [2]((2,5)-thiopheneophenonetetraene should be a rather flexible molecule. A conformation in which the sulfur atoms point outwards from the ring (A in Scheme 2) could be planar enough to allow for some overlap between the p-orbitals in the thiophene rings and the olefinic bridges. The thiophene protons are located inside the ring and the olefinic protons outside the ring in this conformation. A delocalized 24 π-electron system should result in a downfield shift of the inner protons and a smaller upfield shift of the outer protons, as is observed in the NMR spectrum of [2]((2,5)-thiopheneophenonetetraene. The effect, which is enhanced on cooling, is much smaller than in [24]annulene, however.
Table 1. 1H NMR data of some annulenes, $[2]_4$cyclophanetrienes (a), and $[2]_4$cyclophanetetraenes (b).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Temp. °C</th>
<th>Shift of protons</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>outer</td>
<td>inner</td>
<td></td>
</tr>
<tr>
<td>[18]Annulene</td>
<td>20</td>
<td>8.94</td>
<td>-2.0</td>
<td>Diatropic 11</td>
</tr>
<tr>
<td></td>
<td>-60</td>
<td>9.28</td>
<td>-2.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-80</td>
<td>4.73</td>
<td>12.9 - 11.2</td>
<td></td>
</tr>
<tr>
<td>a, X=HC=CH</td>
<td>25</td>
<td>HA 6.79</td>
<td>HB 6.87</td>
<td>Nonplanar 7, 9</td>
</tr>
<tr>
<td>X=O</td>
<td>25</td>
<td>8.68, 8.66</td>
<td>not assigned</td>
<td>Diatropic 8</td>
</tr>
<tr>
<td>X=S</td>
<td>25</td>
<td>6.73, 6.67</td>
<td>not assigned</td>
<td>Nonplanar 9</td>
</tr>
<tr>
<td>b, X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC=CH</td>
<td>25</td>
<td>HA 6.45</td>
<td>HB 6.45</td>
<td>No ring-current 2</td>
</tr>
<tr>
<td>HC=CH</td>
<td>25</td>
<td>6.55, 6.38</td>
<td>11.8</td>
<td>7.24 7.80</td>
</tr>
<tr>
<td>HC=CH</td>
<td>-60</td>
<td>6.58, 6.42</td>
<td>12.7</td>
<td>7.08 6.41</td>
</tr>
<tr>
<td>HC=CH</td>
<td>O</td>
<td>6.34, 6.21</td>
<td>12.7</td>
<td>7.08 6.41</td>
</tr>
<tr>
<td>S</td>
<td>25</td>
<td>6.17, 5.94</td>
<td>12.3</td>
<td>7.23 6.73</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>25</td>
<td>6.19, 6.19</td>
<td>Paratropic ?</td>
</tr>
<tr>
<td></td>
<td>-60</td>
<td>6.09, 6.09</td>
<td>7.33, 7.33</td>
<td>Paratropic</td>
</tr>
</tbody>
</table>

A conformation in which two sulfur atoms point outwards from, and two towards the center of the cyclopane could be more planar (B and C in Scheme 2). Some deviations from the normal bond angles around the bridging double bonds, of the same magnitude as is observed in $[2]_4$paracyclophane tetraene, are necessary, however. Four internal hydrogens and two sulfur atoms could be better accommodated in a planar conformation than eight internal hydrogens (compare A and B in Scheme 2). Such a favoured conformation should well agree with the observed UV spectrum. However, rapid rotation around the single bonds must occur even at -60 °C to rationalize the simple NMR spectrum (Scheme 2). The chemical shift for the thiophene protons is then an average of the shift for the internal and external protons. The observed temperature effect is explained by a large paramagnetic shielding of the inner protons and a smaller paramagnetic deshielding of the outer protons.

A conformation in which all four sulfur atoms point towards the center of the cyclopane (D in Scheme 2) could not be planar and show the observed chemical shifts and their temperature dependence.

Scheme 2.

Conclusions. All-cis $[2]_4$(2,5)thiophenophane- tetraene or $[2]_4$annulene tetrasulfide can readily be prepared in a one-step reaction from simple starting materials. Over the 24 π-electron periphery, the compound shows a small but significant paramagnetic ring current which is enhanced on cooling. Thus planar conformations have lower energy as in the case.
for [24]annulene. Planarity is apparently the most important factor for the delocalization of the π-electrons. The presence of a local aromatic nucleus like thiophene does not interfere with the paratropic behaviour of the molecule.

Experimental. [24](2,5)-Thiophenophenacetraene, 1. 2,5-Thiophenedicarboxaldehyde (5 mmol) and the bistriphenylphosphonium salt of 2,5-bis(chloromethyl) thiophene (5 mmol) were mixed in dry dimethylformamide (250 ml) in a three-necked flask equipped with a mechanical stirrer and a dropping funnel. The temperature was kept at −40 °C with a thermostat-controlled cooling bath, and oxygen-free nitrogen was slowly flushed through the system. Lithium ethoxide in ethanol (ca. 0.3 M) was added dropwise at a rate allowing the coloured ylid to react between successive additions. The rate of reaction was fast in the beginning but slow after ca. half of the required base had been added. The addition took 24 h. When no colour change was observed on addition of base, the reddish solution was warmed to room temperature, diluted with water, and extracted with ether. The ether solution was washed with water, dried, and the solvent evaporated. The residue was chromatographed on silica gel with tetrachloromethane as eluent. The first reddish fraction yielded the desired product, [24](2,5)-thiophenophenacetraene, I (50 mg, 4.6%, mp 210−215 °C). Later fractions, according to their NMR spectra, contained complex mixtures and were not further investigated. The product was assigned as the all-cis isomer.

1H NMR (270 MHz, CDCl₃): δ = 7.32 and 6.19 (8 H, s, thiophene) (8 H, s, olefin), assigned by comparison with other cyclophanes. On cooling the sample to −60 °C, the two singlets separated further to δ = 7.57 and 6.09. UV (C₆H₆): 370 nm (eh), 354 (log ε = 4.78) and 298 (4.46). IR (KBr): 1595 cm⁻¹ (m), 1445 (m), 1402 (m), 1325 (m), 1108 (m), 842 (m) and 816, 804, 800 (sh), 795 (s). MS (70 eV): m/e 432 (M⁺, 100%), 399 (4.0), 398 (4.2), 366 (4.4), 355 (5.8), 364 (4.2), 333 (5.1), 322 (3.6), and 216 (M⁺, 9.6). Abs. mass 432.0145 ± 0.002; calc for C₂₃H₁₈S₄, 432.0135.

[24]Thiophenophenacetraene, dissolved in cyclohexane or benzene with traces of iodine, was photolyzed in a Rayonet reactor. Light with maximum intensity at 254 or 300 nm was used. Only a slow decomposition of the cyclophane was observed.

[24](2,5)-Furanono[2,5]thiopheno[2,5]furanono[2,5]thiophenophenacetraene, 2, prepared by the above method from 2,5-furandicarboxaldehyde and the bistriphenylphosphonium salt of 2,5-bis(chloromethyl) thiophene, was found to be rather unstable and difficult to purify due to rapid decomposition. 1H NMR (270 MHz, CDCl₃) of freshly chromatographed sample: δ = 7.23 (4 H, s, thiophene protons), 6.73 (4 H, s, furan protons), 6.19 (4 H, d) and 5.92 (4 H, d, J = 12.3 Hz, olefinic protons).

Acknowledgements. We thank Mrs. I. Somfai for skilful technical assistance and the Swedish Natural Science Research Council for financial support.

5. Lindqvist, O., Ljungström, E. and Wennerström, O. To be published.

Received April 4, 1977.

Preferred Conformational Angles in Peptides Unperturbed by Hydrogen Bonding and α-Substituents

JOHANNES DALE, PER GROTH and KIRSTEN TITLESTAD

Kjemisk Institutt, Universitetet i Oslo, Blindern, Oslo 3, Norway

With the recent X-ray structure determinations of cyclohexasarcosyl and cyclohecasarcosyl, which turned out to have the configuration sequences, cis,cis,trans,cis,cis,trans and cis,cis,cis,trans,cis,cis,trans, respectively, some striking common features and