Semi-empirical Expression for Diagonal Torsional Force Constants in Halogenated Propanes and Ethanes

REIDAR STØLEVIK

University of Trondheim, NLHT, Rosenborg, N-7000 Trondheim, Norway

A very simple formula for the diagonal elements within the torsional part of the valence force field in halogenated propanes and ethanes has been proposed. It has been shown, that to a good approximation, the torsional force constant of an ethane-like fragment may be expressed as a sum of six contributions, corresponding to the second order derivatives of the six gauche energy interactions.

If the Y,Z atoms of an ethane-like fragment Y'YY"C-CZ'ZZ" are in nearly staggered positions, then the torsion-angle dependent part of the potential energy (V) is approximately equal to the sum of six Y...Z gauche interactions. (Each one of the gauche energy terms includes atom-atom interactions as well as bond-bond interactions.)

The torsional force constant $(F_{\phi}(C-C) = \frac{\partial^2 V}{\partial \phi^2})$ is also expected to be equal to a sum of six contributions, corresponding to the second-order derivatives of the six gauche energy terms.

If we consider a propane derivative R_1 – $YCY'-R_3$, with Y(Y') equal to H or X (halogen) and $R(CH_3, CH_2X, CHX_2, CX_3)$, we need five different partial force constants (F^*_{HH} , F^*_{CH} , F^*_{XH} , F^*_{XX} , F^*_{CX}) in order to express the total diagonal force constant (F_{ϕ}).

$$F_{\phi} = N_{\text{HH}} F_{\text{HH}}^* + N_{\text{CH}} F_{\text{CH}}^* + N_{\text{XH}} F_{\text{XH}}^* + N_{\text{XX}} F_{\text{XX}}^* + N_{\text{CX}} F_{\text{CX}}^*$$

N is the number of gauche interactions of the types indicated $(\sum N=6)$.

The formula of an ethane derivative R_1-R_2 (R: CH_3 , CH_2X , CHX_2 , CX_3) has only three different terms ($N_{CH}=N_{CX}=0$).

Acta Chem. Scand. A 31 (1977) No. 5

For $H_3C - CHX - CH_3$ the formula would be $F_{\phi}(C_1 - C_2) = F_{\phi}(C_2 - C_3) = 2F^*_{HH} + 2F^*_{CH} + 2F^*_{XH}$, and for $XH_2C - CH_2X$ we get F_{ϕ} -(anti) = $2F^*_{HH} + 4F^*_{XH}$ and F_{ϕ} (gauche) = $3F^*_{HH} + 2F^*_{XH} + F^*_{XX}$.

The F^* values may be adjusted in order to reproduce the "experimental" force constants of several molecules. Depending on the number and types of molecules included one will get different sets of F^* values. The set of F^* values presented here reproduce the experimental force constants of 16 related molecules. The average deviation is ca. 10 %, as shown in Table 1. The estimated error limits for most of the experimental values in Table 1 are larger than 10 %.

In adjusting the F^* values, halogenated (X) propanes with parallel C-X bonds on the same side of the CCC skeleton were not included.

The F^* values are: 0.013(HH), 0.017(CH), 0.032(ClH), 0.100(ClCl), and 0.110(CCl) in units of mdyn Å (rad)⁻². The halogenes F, Br, and I may be included in this list. However, the amount of experimental information at present is not as abundant as for chlorinated hydrocarbons. (Useful values for F^*_{CBr} and F^*_{BrBr} are 0.130 and 0.160, respectively, with $F^*_{\text{BrH}} \simeq F^*_{\text{ClH}}$). The list of partial force constants could be extended in order to include molecules containing different kinds of halogenes. (F^*_{CBr} , F^*_{CIF} , F^*_{BrF} etc.)

Certain limitations of the present model are known for some heavily chlorinated propanes. In the two molecules (X=Cl), $X_2HC-CX_2-CHX_2(P6)$ and $X_3C-CX_2-CX_3$ (P8), the experimental values of the diagonal torsional force constants are 0.86 and 0.36 mdyn Å

Table 1. Diagonal torsional force constants (F_{ϕ}) for chlorinated ethanes and propanes. $F_{\phi}(\text{calc.}) =$
$0.013 N_{\rm HH} + 0.017 N_{\rm CH} + 0.032 N_{\rm XH} + 0.100 N_{\rm XX} + 0.110 N_{\rm CX}$, in mdyn Å (rad) ⁻² .
In the contract of the contrac

Molecule $(X = Cl)$	F_{ϕ} -value exp.	calc.	Conformation	Ref.
$X_{\bullet}C - CX_{\bullet} - CHX_{\bullet}(G)$	0.54ª	0.50^{a}	$G: C_1$ symmetry	12
$X_{\bullet}^{\bullet}HC - CX_{\bullet} - CH_{\bullet}^{\bullet}(A)$	0.41^{b}	0.48	A: C. symmetry	11
X.C-CHX.	0.44^{c}	0.46	3 0	9
X.HC-CHX-CHX.	0.43^{a}	0.35^{a}	GG(ag)	10
$X_{C}-CH_{C}X$	0.31^{d}	0.33 d	(6)	9
$X_{\bullet}C - CH_{\bullet} - CHX_{\bullet}(G)$	0.32^{a}	0.304	$G:C_1$ symmetry	8
XH.C-CHX-CH.X	0.24	0.23	mixture	7
$XH_{\bullet}C - CH_{\bullet}X(G)$	0.25	0.19	G: gauche	4
XH,C-CH,-CH,X	0.17^{f}	0.18^{f}	mixture ^f	6
$H_sC-CX_s-CH_s$	0.13	0.16		5
$XH_{\bullet}C - CH_{\bullet}X(A)$	0.17	0.15	A: anti	4
X.HC-CH.	0.14	0.15		3
H.C-CHX-CH	0.13	0.12		2
XH,C-CH,	0.12	0.12		1
$H_{\bullet}C - CH_{\bullet} - CH_{\bullet}$	0.078	0.086		1
H ₂ C-CH,	0.077	0.078		1

(rad)-2, respectively, as determined by electrondiffraction works.13,14 Although the experimental estimates are quite uncertain (ca. 30 %), the values calculated by the present formula, 0.46 (P6) and 0.62 (P8), are significantly different from the experimental ones. A rather small value of F_{ϕ} for P8 was expected. The stable conformer of P8 has C_{2v} symmetry 14 corresponding to parallel (1:3) X...X interactions on both sides of the CCC skeleton. The most stable conformer (GG) of P6 has C_3 symmetry 13 without parallel (1:3) X···X interactions. Therefore the experimental estimates, $F_{\phi}(P6)$ $F_{\phi}(P8)$, are reasonable. It is, however, surprising that the calculated F_{ϕ} values for X₃C-CH₂-CHX₂ and X₃C-CX₂-CHX₂ agree (Table 1) with the experimental ones. The most stable conformer of both molecules possesses one parallel (1:3) X...X interaction.

The limitations pointed out here should be kept in mind. However, for halogenated propanes and related molecules, the most stable conformers usually do not possess parallel (1:3) $\times \times \times$ interactions. It is therefore suggested that the simple formula for F_{ϕ} is a useful approximation for molecules of the

type Y'YY"C-CZZ'R with Y,Z=H or X (halogen) and R=H,X, $-CH_{,1}$ $-CH_{,2}X$, $-CHX_{,2}$, or $-CX_{,3}$.

In order to calculate vibrational frequencies, mean amplitudes of vibration, and related quantities for propanes, the torsional interaction force constant $(F_{\phi\phi'} = \partial^2 V/\partial\phi\partial\phi')$ ought to be included in the force field. However, reliable mean amplitudes of vibration may usually be calculated assuming $F_{\phi\phi'} = 0$. (See Refs. 6-8, 10, 12-14). Moreover, the $F_{\phi\phi'}$ values for most halogenated propanes are probably much smaller than the diagonal term (F_{ϕ}) . But a conformer possessing parallel (1:3) $X \cdots X$ interactions may have a $F_{\phi\phi'}$, value which is in magnitude comparable to the F_{ϕ} value, and most probably negative. 12,14

Conformational differences in torsional force constants may be estimated from the simple formula suggested here. For the chlorinated propanes shown in Table 2 the experimental values of the torsional force constants were not available. The calculated values for the heavily chlorinated compounds in Table 2 may deviate as much as 20-30% from the experimental value, but the average deviation of all F_{ϕ} values is expected to be ca. 10%.

Acta Chem. Scand. A 31 (1977) No. 5

Table 2. Diagonal torsional force constants (F_{ϕ}) predicted for chlorinated propanes (X=Cl). (Conformers possessing parallel C-X bonds on the same side of the CCC skeleton were not included.) $F_{\phi} = 0.013N_{\rm HH} + 0.017N_{\rm CH} + 0.032N_{\rm XH} + 0.100N_{\rm XX} + 0.110N_{\rm CX}$

Propane $(C_1 - C_2 - C_3)$	Conformation	F_{ϕ} in mdy $(C_1 - C_2)$	rn Å (rad) ⁻² (C ₂ -C ₃)
$XH_2C-CH_2-CH_3$	XC-C-C	0.14	0.086
	\mathbf{x}	0.20	0.086
$XH_2C-CHX-CH_3$	$\mathbf{x}^{\mathbf{C}-\mathbf{C}-\mathbf{C}}$	0.21	0.12
	$\begin{array}{ccc} \mathbf{X} & \mathbf{X} \\ \mathbf{C} - \mathbf{C} - \mathbf{C} \end{array}$	0.27	0.12
	$\mathbf{x}^{\mathbf{C}-\mathbf{C}-\mathbf{C}}$	0.24	0.12
$X_2HC-CH_2-CH_3$	$\mathbf{X} \\ \mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X}$	0.31	0.086
	$\mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C}$	0.24	0.086
$X_3C-CH_2-CH_3$	$\mathbf{X}^{\mathbf{X}}_{\mathbf{X}^{\mathbf{C}}-\mathbf{C}-\mathbf{C}}$	0.35	0.086
$\mathbf{X_2HC-CH_2-CH_2X}$	$\mathbf{x}_{\mathbf{x}}^{\mathbf{c}-\mathbf{c}-\mathbf{c}}$	0.24	0.20
	$egin{array}{c} \mathbf{X} \\ \mathbf{C} - \mathbf{C} - \mathbf{C} \mathbf{X} \\ \mathbf{X} \end{array}$	0.31	0.14
	\mathbf{X} $\mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C}\mathbf{X}$	0.24	0.14
$X_2C-CHX-CH_3$	$\mathbf{x}^{\mathbf{C}-\mathbf{C}-\mathbf{C}}_{\mathbf{X}}$	0.32	0.12
	$egin{array}{c} \mathbf{X} & \mathbf{X} \\ \mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C} \end{array}$	0.37	0.12
	${f x} {f x} {f x} {f C} - {f C} - {f C} {f X}$	0.40	0.12
$XH_2C-CX_2-CH_3$	$\mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C}$	0.30	0.16
	${\overset{\mathrm{C}-\mathrm{C}-\mathrm{C}}{\mathrm{X}}}$	0.32	0.16
$X_3C-CHX-CH_3$	$egin{array}{ccc} \mathbf{X} & \mathbf{X} \\ \mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X} \end{array}$	0.48	0.12

Table 2. Continued.

X ₂ HC-CHX-CH ₂ X	X X C-C-CX X	0.40	0.21	
	${\overset{\mathbf{X}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}}}{\overset{\mathbf{X}}}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{X}}}}{\overset{\mathbf{X}}{\overset{X}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}{\overset{X}}}}{\overset{\mathbf{X}}{\overset{X}}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}{\overset{\mathbf{X}}}{\overset{X}}}}{\overset{\mathbf{X}}}}}}{\overset{\mathbf{X}}}}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}}{\overset{\mathbf{X}}}}}{\overset{\mathbf{X}}}}}}{\overset{\mathbf{X}}}}{\overset{\mathbf{X}}}}$	0.32	0.21	
	$egin{array}{ccc} \mathbf{X} & \mathbf{X} \\ \mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X} \end{array}$	0.32	0.27	
	$\begin{array}{ccc} \mathbf{X} & \mathbf{X} \\ \mathbf{XC-C-CX} \end{array}$	0.37	0.21	
	$egin{array}{ccc} \mathbf{X} & \mathbf{X} \\ \mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X} \end{array}$	0.37	0.24	
$XH_2C-CX_2-CH_2X$	XC - C - CX X	0.30	0.30	
	$egin{array}{c} \mathbf{X} & \mathbf{X} \\ \mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X} & \mathbf{X} \end{array}$	0.32	0.32	
	$egin{array}{c} \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X} & \end{array}$	0.30	0.32	
X ₂ HC-CH ₃ -CHX ₂	${f x} \\ {f x} {f c} - {f c} - {f c} {f x} \\ {f x}$	0.24	0.24	
$X_3C-CH_2-CH_2X$	$\mathbf{X} \\ \mathbf{X} \\ \mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X}$	0.35	0.14	
$X_3C-CX_2-CH_3$	$egin{array}{ccc} \mathbf{X} & \mathbf{X} \\ \mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X} & \mathbf{X} \end{array}$	0.62	0.16	
$X_2HC-CX_2-CH_2X$	$egin{array}{ccc} \mathbf{X} & \mathbf{X} \\ \mathbf{C} - \mathbf{C} - \mathbf{C} \mathbf{X} \\ \mathbf{X} & \mathbf{X} \end{array}$	0.48	0.30	
	$\begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{array}$	0.46	0.30	
	$egin{array}{c} \mathbf{X} & \mathbf{X} \\ \mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{X} & \mathbf{X} \end{array}$	0.46	0.32	
$X_3C-CHX-CH_2X$	${\mathbf X} \\ {\mathbf X} \\ {\mathbf C} - {\mathbf C} - {\mathbf C} \\ {\mathbf X} \\ {\mathbf X}$	0.48	0.21	
X ₂ C - CX ₂ - CH ₂ X	$egin{array}{ccc} \mathbf{X} & \mathbf{X} \\ \mathbf{X}\mathbf{C} - \mathbf{C} - \mathbf{C}\mathbf{X} \\ \mathbf{X} & \mathbf{X} \\ \end{array}$	0.62	0.30	

Using the partial force constants F_{BrH} (0.032), $F^*_{CBr}(0.130)$, $F^*_{BrBr}(0.160)$, and the values of F^*_{HH} and F^*_{CH} already given, the F_{ϕ} values for brominated ethanes and propanes may be estimated, but with less confidence than for the chlorinated compounds.

REFERENCES

- 1. Moore, W. H., Ching, J. H. C., Warrier, A. V. R. and Krim, S. Spectrochim. Acta A 29 (1973) 1847.
- 2. Cyvin, B. N. and Cyvin, S. J. Acta Chem. Scand. 26 (1972) 3943.
- 3. During, J. R., Sloane, A. E. and Witt, J. D.
- J. Phys. Chem. 76 (1972) 3591. 4. Kveseth, K. Acta Chem. Scand. A 28 (1974)
- 5. Andresen, I. L., Cyvin, S. J., Larsen, B. and Tørset, O. Acta Chem. Scand. 25 (1971) 473.
- 6. Grindheim, S. and Stølevik, R. Acta Chem.
- Scand. A 30 (1976) 625.
 7. Farup, P. E. and Stølevik, R. Acta Chem. Scand. A 28 (1974) 871.
- 8. Johnsen, J. P. and Stølevik, R. Acta Chem. Scand. A 29 (1975) 457.
- 9. Allen, G., Brier, P. N. and Lane, G. Trans. Faraday Soc. 63 (1967) 824.
- 10. Grindheim, S. and Stølevik, R. Acta Chem.
- Scand. A 31 (1977) 69.

 11. Heatley, F., Allen, G., Hameed, S. and Jones, P. W. Trans. Faraday Soc. 68 (1972) 1547.
- Johnsen, J. P. and Stølevik, R. Acta Chem. Scand. A 29 (1975) 201.
- 13. Fernholt, L. and Stølevik, R. Acta Chem. Scand. A 29 (1975) 651.
- 14. Fernholt, L. and Stølevik, R. Acta Chem. Scand. A 28 (1974) 963.

Received December 8, 1976.