(Cyanomethyl)phosphines from **Trimethylsilylphosphines** OTTO DAHL Department of General and Organic Chemistry, The H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark (Cyanomethyl)phosphines, $R_{3-n}P(CH_2CN)_n$, are known for n=1. They were prepared from phosphinites and chloroacetonitrile followed by reduction of the product R₂P(O)CH₂CN, a method which is not feasible for preparation of (cyanomethyl)phosphines with n=2 or 3. We describe here a more general method for preparation of (cyanomethyl)phosphines, viz. reaction of trimethylsilylphosphines with chloroacetonitrile (eqn. 1). Trimethylsilylphosphines $$\begin{aligned} & \text{Ph}_{3-n} \text{P}(\text{SiMe}_3)_n + n \text{ClCH}_2 \text{CN} \rightarrow \text{Ph}_{3-n} \text{P}(\text{CH}_2 \text{CN})_n \\ & + n \text{Me}_3 \text{SiCl} \end{aligned} \tag{1}$$ have been used mostly for preparation of acylphosphines,2,3 although one reaction methyl iodide 4 and a few reactions with reactive chloro compounds, e.g. diethyl dichloromaleate,5 are known. Less reactive alkyl chlorides do not react, e.g. Ph₂PSiMe₃ is reported not to react with ClCH₂CH₂Cl.⁵ We have found that ClCH₂CN reacted in moderately exothermic reaction a moderately exothermic reaction with $Ph_{3-n}P(SiMe_3)_n$, n=1, 2, or 3, and Me_3SiCl could be isolated in 80-90 % yield. In the cases n=1 and 2, Ph_2PCH_2CN and $PhP(CH_2CN)_2$, respectively, were isolated in good yields by distillation, but no $P(CH_2CN)_3$ could be obtained in this way. The reaction in the case of n=3 yields predominantly a dark intractable material which is apparently polymeric. It contained, however, some P(CH₂CN)₃ (NMR) which could be isolated in low yield by sublimation. In contrast to Ph₂PCH₂CN, which is oxidized slowly in air, PhP(CH₂CN)₂ and P(CH₂CN)₃ are stable towards air in the solid state. They are rather easily oxidized in solution or when melted. Their nucleophilic reactivities are very low, as expected. Thus P(CH₂CN)₃ is unchanged after 24 h reflux with an excess of EtI in acetone. The reaction of trimethylsilylphosphines with chloroacetonitrile thus seems to be a convenient method of obtaining cyanomethylphosphines with one or two cyanomethyl groups, but less so with three cyanomethyl groups. We are presently examining other synthetic pathways to cyanomethylphosphines in general and P(CH₂CN)₃ in particular. Experimental. Analyses were carried out by the Microanalysis Department of this laboratory. NMR spectra were obtained on a Bruker HX-90 E Spectrometer. Chemical shifts (ppm) are relative to internal TMS for ¹H data $(\delta_{\rm H})$ and external 85 % H_3PO_4 for ³¹P data (δ_P), and are given as positive for low-field shifts. All stated ¹H - ³¹P couplings have been verified by decoupling experiments. IR spectra were recorded on a Perkin Elmer 337 Grating Infrared Spectrometer, MS spectra on an AEI-902 Mass Spectrometer at 70 eV, inlet temp. 180 °C. All reactions with phosphines were performed under nitrogen. The trimethylsilylphosphines were prepared by published methods and their purity checked by ¹H and ³¹P NMR: Ph₂PSiMe₃, ⁶ δ_P -57.3 (neat). PhP(SiMe₃), ⁷ b.p. 65-66 °C/0.2 mmHg, δ_P -136.0 (CDCl₃) (lit. b.p. 76 °C/0.05 mmHg, ⁷ and 67 °C/0.01 mmHg ⁸ could not be corroborated, δ_P -137 (neat)). P(SiMe₃), ⁹ 17 % yield, b.p. 64-65 °C/1.2 mmHg, δ_P -252.0 (neat), -249.9 (CDCl₃) (lit. 62 % yield and b.p. 50-52 °C/0.1 mmHg ⁹ could not be obtained, b.p. 105 °C/16 mmHg, ¹⁶ δ_P -251.2 (neat)¹¹). Diphenylphosphinoacetonitrile (Ph₂PCH₃CN). Ph₂PSiMe₃ (12.9 g, 0.05 mol) and ClCH₂CN All reactions with phosphines were per- Ph₂PSiMe₃ (12.9 g, 0.05 mol) and ClCH₂CN (3.8 g, 0.05 mol) were mixed and stirred at 25 °C in a flask equipped with a Claisen head with condenser. After the exothermic reaction had subsided the mixture was heated in an oil bath (temp. ca. 110 °C), whereupon Me₂SiCl (4.4 g, 80 %) distilled. The red-brown residue gave upon distillation in vacuo (same apparatus) Ph_2PCH_2CN (8.0 g, 71 %), b.p. 138-140 °C/0.1 mmHg, $\delta_{\rm P} - 17.8$ (CDCl₃) [lit. 146 – 147 °C/0.35 mmHg, $\delta_{\rm P} - 17.8$ (CDCl₃)]. No impurities were observable from its 'H NMR spec- Phenylphosphinediyldiacetonitrile (PhP-(CH₂CN)₂). PhP(SiMe₃)₂ (5.1 g, 0.02 mol) and ClCH₂CN (3.0 g, 0.04 mol) gave when treated as above Me₃SiCl (3.9 g, 90 %) and PhP-(CH₂CN)₂ (1.9 g, 50 %), b.p. 148 – 150 °C/0.25 mmHg, m.p. 59 – 62 °C. Anal. C₁₀H₃N₂P: C, H, N. NMR (ca. 2 M in CDCl₃): $\delta_{\rm P}$ – 31.0. CH₂CN (ABX system): $\delta_{\rm H(A)}$ 2.866, ²J_{PH(A)} 5.9 Hz, $\delta_{\rm H(B)}$ 2.820, ²J_{PH(B)} 5.4 Hz, ²J_{H(A)H(B)} 16.7 Hz. Ph: $\delta_{\rm H}$ 7.4 – 7.7 (m). IR (KBr): $\nu_{\rm CN}$ 2246, 2234 cm⁻¹. PhP(CH₂CN)₂ is very soluble in CHCl₃ and insoluble in H₂O. Phenylphosphinediyldiacetonitrile (PhPin CHCl₃ and insoluble in H₂O. Phosphinetriyltriacetonitrile (P(CH₂CN)₃) P(SiMe₃)₃ (5.0 g, 0.02 mol) and ClCH₂CN (4.5 P(SiMe₃)₃ (5.0 g, 0.02 mol) and ClCH₂CN (4.5 g, 0.06 mol) gave when treated as above Me₃SiCl (5.2 g, 80 %) and a dark red residue. ¹H NMR (CD₃CN) on the residue showed as the most prominent signal a doublet, $\delta_{\rm H}$ 2.89, J 5.3 Hz, $\delta_{\rm P}$ -33.5 (determined by ³¹P decoupling) assigned to P(CH₂CN)₃. The amount of P(CH₂CN)₃ was estimated as ca. 30 % of the theoretical yield by comparison of the P(CH₂CN)₃ signal with that from a known amount of added CH₂Cl₂. Attempted vacuum distillation through a Claisen head (0.2-0.5 distillation through a Claisen head (0.2-0.5)mmHg, bath up to 220 °C) gave no distillate, and the residue turned black. However, a small amount (ca. 0.5 ml) of a liquid consisting mostly of CH₃CN (¹H NMR) had collected in the dry-ice trap. Sublimation of the residue (0.1 mmHg, 180 °C) gave a small amount (0.3 g, 10 %) of slightly impure (yellow) P(CH₂CN)₃, which on resublimation or recrystallization from water (with a small amount of hydroquinone) gave the pure compounds as colourless needles, m.p. 112 – 113 °C. Anal. $C_6H_6N_3P$: C, H, N. NMR: δ_P – 33.4, δ_H 2.88, $^2J_{PH}$ 5.3 Hz (CD₃CN), δ_P – 32.9, δ_H 3.12, $^2J_{PH}$ 4.3 Hz [(CD₃)₂SO]. IR (KBr): $\nu_{\rm CN}$ 2245 cm⁻¹. MS: m/e 151 (M⁺, 41 %), 111 (M⁺ – CH₂CN, 100 %), 71 (M⁺ – 2CH₂CN, 36 %), "metastable" 81.6 (151 \rightarrow 111). P(CH₂CN)₃ is soluble in DMSO, CH₃CN, and (CH₃)₂CO, slightly soluble in CH₃OH and H₂O, and nearly insoluble in CHCl₃. Phenylphosphonoyldiacetonitrile (PhP(O)-(CH₂CN)₂). PhP(CH₂CN)₂ (1.88 g) in CH₂Cl₂ (35 ml) was oxidized by bubbling NO₂ through the stirred solution until a yellow colour remained. The solution was evaporated to dryness and the residue recrystallized from H₂O. Yield 1.43 g (70 %), m.p. 135.5-136.5 °C. Anal. C₁₀H₂N₂OP: C, H, N. NMR[(CD₃)₂SO]: $\delta_{\rm P}$ 26.4, CH₂CN: $\delta_{\rm H}$ 3.99, $^2J_{\rm PH}$ 14.2 Hz. IR (KBr): $\nu_{\rm CN}$ 2259, 2250 cm⁻¹, $\nu_{\rm PO}$ 1200 cm⁻¹. PhP(O)(CH₂CN)₂ is very soluble in DMSO, (CH₃)₂CO and CH₃CN, and slightly soluble in CHCl₃ and H₂O. Phosphoryltriacetonitrile $(P(O)(CH_2CN)_3)$. To $P(CH_2CN)_3$ (0.15 g) in hot water (3 ml) was added dropwise 35 % H_2O_2 (0.5 ml). The oxide precipitated during the reaction. After cooling to 0 °C the compound was collected by centrifugation, washed with water and dried in vacuo. Yield 0.15 g (90 %), m.p. ca. 260 °C (dec.). Anal. $C_4H_4N_3OP$: C, H, N. NMR $[(CD_3)_2SO]$: δ_P 27.9, δ_H 3.81, ${}^2J_{PH}$ 14.8 Hz. IR (KBr): v_{CN} 2256 cm⁻¹, v_{PO} 1229, 1225, 1204, 1197 cm⁻¹. $P(O)(CH_2CN)_3$ is very soluble in DMSO, slightly soluble in H_2O and CH_3CN , and insoluble in $CHCl_3$. - Dahl, O. and Jensen, F. K. Acta Chem. Scand. B 29 (1975) 863. - Kunzek, H., Braun, M., Nesener, E. and Rühlmann, K. J. Organometal. Chem. 49 (1973) 149. - Fenske, D., Langer, E., Heymann, M. and Becher, H. J. Chem. Ber. 109 (1976) 359, and references therein. - Nöth, H. and Schrägle, W. Z. Naturforsch. B 16 (1961) 473. - B 16 (1961) 473. Becher, H. J., Fenske, D. and Langer, E. Chem. Ber. 106 (1973) 177. - Schumann, H. and duMont, W.-W. Chem. Ber. 108 (1975) 2261. - Itoh, K., Fukui, M. and Ishii, Y. J. Chem. Soc. C (1969) 2002. - Baudler, M. and Zarkadas, A. Chem. Ber. 106 (1973) 3970. - Schumann, H. and Rösch, L. Chem. Ber. 107 (1974) 854. - Bürger, H. and Goetze, U. J. Organometal. Chem. 12 (1968) 451. Fluck, E., Bürger, H. and Goetze, U. Z. Naturforsch. B 22 (1967) 912. Received June 28, 1976.