Crystal Conformation of Cyclotrisarcosyl at \(-160^\circ C\)

P. GROTH

Department of Chemistry, University of Oslo,
Oslo 3, Norway

To account for the relatively high observed resistance to ring inversion in cyclic oligopeptides of sarcosine with the general formula transannular interactions between N and C (carbonyl) were suggested.\(^1\)\(^-\)\(^4\) X-Ray crystallographic results for the cases \(n=4, 5, 7,\) and \(8\) \(^1\)\(^-\)\(^4\) do not support this assumption, and the explanation should be sought in the intrinsic conformation of the peptide chain itself.\(^4\) The NMR-spectrum for cyclotrisarcosyl,\(^1\) consisting of one singlet for N-methyl and one quartet for CH\(_3\) (intensity 9:6), shows that all amide groups have the same configuration. Since they cannot all be trans in a nine-membered ring, they must all be cis. In order to confirm this clear conformational evidence an X-ray crystallographic investigation of cyclotrisarcosyl has been performed.

The crystals of C\(_4\)H\(_{10}\)N\(_2\)O\(_4\) belong to the monoclinic system, with cell dimensions \(a = 12.902(6) \, \text{Å}, \quad b = 12.342(6) \, \text{Å}, \quad c = 13.218(6) \, \text{Å},\)

Table 1 A. Final fractional coordinates and thermal parameters with estimated standard deviations for molecule A. The expression for anisotropic vibration is \(exp[2\pi i \left(ka^{*}U_{11}x + ... + 2klb^{*}c^{*}U_{23}\right)]\). HNn is bonded to Cm and HMmn to CmM.

<table>
<thead>
<tr>
<th>A</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>B</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U12</th>
<th>U13</th>
<th>U23</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>1.8436(19)</td>
<td>1.7932(28)</td>
<td>0.9771(18)</td>
<td>1.6592(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
<tr>
<td>O2</td>
<td>1.7126(19)</td>
<td>1.6141(25)</td>
<td>1.0784(18)</td>
<td>1.6362(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
<tr>
<td>O3</td>
<td>2.0203(19)</td>
<td>1.7322(25)</td>
<td>1.2354(18)</td>
<td>1.4694(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
<tr>
<td>C1</td>
<td>2.0556(19)</td>
<td>1.6809(25)</td>
<td>1.5641(18)</td>
<td>1.4694(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
<tr>
<td>C2</td>
<td>1.7126(19)</td>
<td>1.6141(25)</td>
<td>1.0784(18)</td>
<td>1.6362(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
</tbody>
</table>

Table 1 B. Final fractional coordinates etc. for molecule B.

<table>
<thead>
<tr>
<th>A</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>B</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U12</th>
<th>U13</th>
<th>U23</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>1.7126(19)</td>
<td>1.6141(25)</td>
<td>1.0784(18)</td>
<td>1.6362(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
<tr>
<td>O2</td>
<td>1.7126(19)</td>
<td>1.6141(25)</td>
<td>1.0784(18)</td>
<td>1.6362(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
<tr>
<td>O3</td>
<td>2.0203(19)</td>
<td>1.7322(25)</td>
<td>1.2354(18)</td>
<td>1.4694(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
<tr>
<td>C1</td>
<td>2.0556(19)</td>
<td>1.6809(25)</td>
<td>1.5641(18)</td>
<td>1.4694(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
<tr>
<td>C2</td>
<td>1.7126(19)</td>
<td>1.6141(25)</td>
<td>1.0784(18)</td>
<td>1.6362(15)</td>
<td>0.2245(15)</td>
<td>0.9774(15)</td>
<td>0.3276(15)</td>
<td>0.755(15)</td>
<td>0.7345(15)</td>
<td>0.313(15)</td>
</tr>
</tbody>
</table>

Table 2 A. Bond distances, bond angles and dihedral angles with estimated standard deviations for molecule A.

<table>
<thead>
<tr>
<th>Distance (Å)</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 = C1 = C2 = C3 = C4 = C5 = C6 = C7 = C8 = C9 = C10</td>
<td>D2 = C11 = C12 = C13 = C14 = C15 = C16 = C17 = C18 = C19 = C20</td>
</tr>
</tbody>
</table>

Table 2 B. Bond distances etc. for molecule B.

<table>
<thead>
<tr>
<th>Distance (Å)</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 = C1 = C2</td>
<td>D2 = C3 = C4 = C5 = C6 = C7 = C8 = C9 = C10</td>
</tr>
</tbody>
</table>

The structure was solved by direct methods and refined by full-matrix least-squares technique. Methylene hydrogen positions were calculated. Methyl hydrogens were localized in a difference Fourier map. Anisotropic temperature factors were introduced for O, N, and C atoms, and weights in least-squares were calculated from the standard deviations in intensities, \(\sigma(I)\), taken as

\[\sigma(I) = \sqrt{\frac{2}{N}} \sum_{i=1}^{N} \frac{I_i^2}{N_i} \]

where \(C_T\) is the total number of counts and \(C_N\) the net count. The final weighted \(R\)-value was 4.5% (conventional \(R = 5.0\%\)) for 2439 observed reflections. The form factors used were those of Hanson et al. except for hydrogen.

Final fractional coordinates and thermal parameters for the two independent molecules (A and B) are given in Table 1 A and Table 1 B. From the temperature parameters of these tables the principal axes of thermal vibration ellipsoids were calculated. Maximum r.m.s. amplitudes range from 0.17 Å to 0.38 Å. No rigid-body analyses have been carried out.

Bond distances and angles and dihedral angles are listed in Tables 2 A and 2 B. The standard deviations (in parentheses) are estimated from the correlation matrix of the final least-squares refinement cycle. The two independent molecules have the same “crown” conformation shown in Fig. 1, which is the only conformation consistent with NMR-data.

Average values of bond distances and two of the bond angles at nitrogen in the N-methyl amide groups are compared with earlier findings in Table 3. It may be seen that the average (\(O - N - CC\) cis angle of tricyclo-

\[\beta = 90.82(4)^\circ\]

space group \(P2_1/n\), and eight molecules in the unit cell \((D_m = 1.33 \text{ g cm}^{-3}, D_x = 1.34 \text{ g cm}^{-3})\). At room temperature the crystals are to some extent destroyed by the radiation and data were therefore collected at 100°C (automatic four circle diffractometer, MoK-alpha radiation, 2439 observed reflections). No corrections for absorption or secondary extinctin-

Fig. 1. Schematic drawing showing the molecular conformation.

Crystal Conformation of Cyclodecasarcosyl. 4CH₃OH at —160 °C

P. GROTH

Department of Chemistry, University of Oslo, Oslo 3, Norway

With exception for the case n = 6, the crystal structures of cyclic oligopeptides of sarcosine with the general formula I are known.¹⁻⁴ For

\[
\text{(1)} \quad \begin{array}{c}
\text{N-CH₂-C₅R} \\
\text{C₅R} \\
n = 2, 3, 4 \text{ and } 8
\end{array}
\]

n = 2, 3, 4 and 8, the conformations could be predicted on the basis of NMR data.⁵ For n = 5,

sarcosyl is somewhat greater than those of the larger rings. It should also be pointed out that the significantly longer CM—N bonds of cyclopenta- and cyclooctasarcosyl are possibly connected with the fact that for these compounds methyl hydrogens were not included in the calculations.

There are no short inter-molecular contacts. A list of observed and calculated structure factors is available from the author.

Acknowledgement. The author thanks cand. real. K. Titlestad for preparing the crystals.

Received August 11, 1976.