The Hydrolysis of the Tin(II) Ion SYLVIA GOBOM Department of Inorganic Chemistry, Chalmers University of Technology and University of Göteborg, P.O. Box, S-402 20 Göteborg 5, Sweden The hydrolysis of Sn(II) has been studied by means of potentiometric titrations at low Sn(II) concentrations, ranging from 0.02 to 2.3 mM, in the pH range 2.7–3.7. Tin amalgam and glass electrodes were used as sensors and all measurements were carried out at 25 °C, using 3 M NaClO₄ as ionic medium. The emf data could be explained by the following reactions and equilibrium constants. $$3\text{Sn}^{2+} + 4\text{H}_2\text{O} \rightleftharpoons \\ \text{Sn}_3(\text{OH})_4^{2+} + 4\text{H}^+ \qquad \qquad \text{lg } *\beta_{43} = -6.81 \pm 0.03$$ The formation constants were calculated with the least squares program LETAGROP. This work can be considered as an extension of the study of the tin(II) hydrolysis by Tobias,1 in which potentiometric titrations of tin(II) perchlorate solutions were carried out in a 3 M NaClO₄ medium with tin concentrations varying from 2.5 mM to 40 mM. In the pH range investigated (1.5-3.0 for the lowest and 1.5-2.4 for the highest tin concentration) Tobias found that $Sn_3(OH)_4^{2+}$ predominated, small amounts of SnOH+ and Sn₂(OH)₂²⁺ also being present. A summary and discussion of the results of hydrolytic tin(II) studies made before 1958 is given in Tobias' paper,1 and very few studies have been reported since. The existence of SnOH+, in the concentration range used in Tobias' investigation, has, however, been questioned by Liang Chia-Ch'ang and Tu Yu-Ming.² After new calculations based on Tobias' data they concluded that the main hydrolysis products were $Sn_3(OH)_4^{2+}$ and Sn₂(OH)₃+ with minor amounts of Sn₂(OH)₂²⁺. Mesmer and Irani 3 measured the solubility of SnO at 25 °C in 1 M perchloric acid-sodium perchlorate mixtures, and, using the equilibrium model proposed by Tobias, calculated the constant for the hydrolysis reaction $SnO(s) + H_3O^+ \rightleftharpoons SnOH^+ + H_2O$, i.e. $\lg K_{s1} = -0.28$. Because of the extensive hydrolysis of tin(II), it is necessary to know the composition and the formation constants of the hydrolytic species when studying complexes with other ligands in aqueous solutions. The formation of Sn₃(OH)₄²⁺ is well established by Tobias.¹ The mononuclear SnOH+ suggested by Tobias,1 was not formed according to the calculations due to Liang et al., Sn₂(OH)₃+ being introduced instead. The aim of the present work was to investigate the possible formation of SnOH+. For this reason a concentration range in which the formation of SnOH+ ought to be favoured was examined. The results of this work were to be used in a study of acetato-tin(II) complexes in 3 M NaClO₄. ### SYMBOLS The following notation is used: lg log, H analytical hydrogen ion concentration h free hydrogen ion concentration B analytical concentration of Sn(II) b free concentration of Sn(II) η lg B/b E_H measured emf of the glass electrode (4) E_B measured emf of the amalgam electrode (3) number of ampereseconds passed through the test solution during anodic oxidation DEH $E_{H,\text{cal}} - E_H$ (Table 1), where $E_{H,\text{cal}}$ denotes the calculated value of E_H . DEB $E_{B,\text{cal}} - E_B$ (Table 1), where $E_{B,\text{cal}}$ denotes the calculated value of E_B . Acta Chem. Scand. A 30 (1976) No. 9 Emf values are given in mV and equilibrium constants on the molar scale. #### METHOD OF INVESTIGATION The measurements were performed as potentiometric titrations in a paraffin oil thermostat at 25 °C, using the automatic titrator described earlier. Since a concentration range favouring the formation of SnOH+ was to be used, solutions with a much lower Sn(II) content than that used by Tobias had to be prepared. It thus proved convenient to generate the tin ions by constant current electrolysis. When larger amounts of Sn(II) are required the method used by Tobias, in which a solution of Cu(ClO₄)₂ is passed through a tin column, yielding an equivalent amount of tin(II) ions, is, however, preferable. The free concentrations of Sn^{2+} and H^{+} , b and h, were measured with a tin amalgam and a glass electrode, respectively. The cells were of the following types $$-Sn(Hg)$$ | solution S | 3 M NaClO₄ | RE + (1) $$-GE$$ | solution S | 3 M NaClO₄ | RE + (2) where GE is the glass electrode and RE the reference half cell: $$Ag, AgCl \mid 0.010 \text{ M } Ag^+, 2.99 \text{ M } Na^+, 3.00 \text{ M } ClO_4^-$$ In some titrations (Nos. 1 and 6, Table 1) sodium chloride was used instead of silver perchlorate in the reference half cell (since an investigation of the tin(II) hydrolysis in alkaline solution was carried out simultaneously). No difference in the stability of the two types of reference half cells could be detected. The emfs of cells (1) and (2) can be written $$E_B = E_B^{\circ} - \frac{1}{2} \times 59.16 \text{ lg } b + E_i \tag{3}$$ and $$E_H = E_H^{\circ} - 59.16 \lg h + E_i \tag{4}$$ It was assumed that the activity factors were constant and could thus be included in the constants E_{B}° and E_{H}° , respectively. E_{j} , the liquid junction potential between the test solution and the 3 M NaClO₄ in the salt bridge was calculated from $E_{j}=jh$ mV, j=0.017 mV/mM, according to earlier studies by Biedermann and Sillén.9 A description of the electrodes and the equipment used for the coulometric addition of tin ions and other experimental details are given in Ref. 6. The hydrolysis of tin(II) was studied by introducing tin(II) ions into an acidified solution of 3 M NaClO₄, the H level being kept constant in each titration. The initial solution, 3 M NaClO₄ containing a slight excess of protons, was prepared from freshly prepared stock solutions. The proton excess was determined by titration with hydrogen ions, generated electrolytically in the solution. A platinum gauze was used as an anode, the other parts of the electrolysis circuit being the same as described in Ref. 6. This type of coulometer was introduced by Biedermann and Ciavatta. 10 Gran's extrapolation method 11 was used to calculate the original H. The stepwise addition of H^+ was continued, until the desired H level was reached, and for each addition the constant E_{H}° (4) was calculated. The platinum gauze was then replaced by a tin amalgam anode, and the tin ions were generated in steps of ca. 0.5 μ mol, with a current density of ca. 1.2 mA/cm². After each step of electrolysis the equilibrium emf's of the measuring tin amalgam electrode and glass electrode, E_B and E_H , were registered (Table 1). A graphical survey of the concentration ranges covered in these experiments is given in Fig. 1. ## Chemicals and analysis Sodium perchlorate solutions were prepared as described by Biedermann.¹² Tin amalgams were prepared as described in Ref. 6. The analytical tin(II) concentration was calculated from the known amount of ampereseconds that passed through the solution during electrolysis. ## CALCULATIONS AND RESULTS The hydrolytic equilibria can be described by the general reaction $$q\operatorname{Sn}^{2+} + p\operatorname{H}_{2}\operatorname{O} \rightleftharpoons \operatorname{Sn}_{q}(\operatorname{OH})_{p}^{(2q-p)} + p\operatorname{H}^{+}$$ with the equilibrium constants $*\beta_{qp}$. The mass balances for B and H give $$B = b + \sum_{pq} q * \beta_{qp} b h^{-p} \tag{5}$$ $$h = H + \sum_{pq} p^* \beta_{qp} b h^{-p} \tag{6}$$ The equilibrium constants were determined from 223 experimental points obtained from six different titrations. Part of the data (Q, E_B, E_H) are listed in Table 1,* and the con- ^{*} A complete list of the experimental data is available from the Department of Inorganic Chemistry, Chalmers University of Technology and University of Göteborg, P.O. Box, S-402 20 Göteborg 5, Sweden. Table 1. Experimental data. Part of computer output for 6 titrations. For each point Q(coulomb), $E_H(\equiv \text{EH})$, $E_B(\equiv \text{EB})$, pH, DEH = $E_{H,\text{cal}}-E_H$ and DEB = $E_{B,\text{cal}}-E_B$ are given. H_0 and B_0 are the initial concentrations of H+ and Sn²⁺, respectively. All concentrations are given in mM. $V_0=49.98$ ml. In the calculations the equilibrium constants $g_1=-3.70$ and $g_2=-6.81$ were used. E_B and E_H in the table correspond to E_B ° and E_H ° in eqns. (3) and (4). | • | | | | | | 2 | - 44 | | , | | , . | | |--|--
--|---|---|--|---
--|--|---|--|-------|----------------| | SATS 1. | | 423.56± | | E = - | 214.03 | | SATS 5. | | 819,44± | | E = | 17 | | 5413 10 | ъ. | 423630- | •••• | ъ. | | | 3-13 5 | | 017477 | 0.03 | _H_ | | | | | 0.1934 | | B = 0 | | | | | 1.138 | | 8 = | 0 | | | 0 | | | 0 | | | | 0 | | | 0 | | | | | | | | | | | | | | | | | 0(C) | EH(MY) | EB(MV) | PH | -DEH | -DEA | | Q(C) | EH(MV) | EB(MV) | PH | -DEH | -DER | | | | | | -0.05 | 0.05 | | | | | | | | | 0.197 | 1.36 | 571.28
568.36 | 3.6908
3.6852 | -0.05 | 0.05 | | 0.764 | 171.63 | 942 + 89 | 2.9394 | -0.10 | 0.06 | | 0.247 | | | 3.6852 | -0.03 | 0.01 | | 0.860 | 171.61
171.57 | 941.40 | 2.9388 | -0.09 | | | 0.296 | 0.71 | 565.97
564.00 | 3.6796
3.6739 | 0.08 | -0.07 | | 0.956 | 171.57 | 940.06 | 2.9383 | -0.09 | 0.09 | | 0.345 | 0.48 | 562+38 | 3.6682 | | | | 1.051 | | | 2.9377 | -0.04 | 0.09 | | 0.444 | 0.05 | 560.91 |
3.6624 | -0.01 | -0.01 | | 1.242 | 171.52
171.48 | 936.68
934.83 | 2.9354 | -0.01 | | | 0.493 | -0.17
-0.52 | 559.61 | 3.6567 | 0.09 | 0.01 | | 1.624 | 171.42 | 933.20 | 2.9342 | 0.0 | 0.03 | | 0.473 | -0.32 | 337101 | 3.030 | | •••• | | 1.816 | 171.35 | 931.78 | 2.9330 | 0.0 | 0.03 | | | | | | | | | 2.007 | 171.30 | 930.49 | 2.9318 | 0.02 | | | SATS 2. | F = | 816.81± | 0.03 | E = 1 | 56.53 | | 2.198 | 171.23 | 929.32 | 2.9306 | 0.02 | 0.0 | | | | | | "н | | | 2.389 | 171.17 | 928.25 | 2,9293 | | -0.01 | | | | 0.2302 | | B = 0 | .0350 | | 2.676 | 171.06 | 926.80 | 2.9274 | 0.04 | -0.02 | | | 0 | | | 0 | | | 2.962 | 170.96 | 925.49 | 2.9255 | 0.05 | -0.04 | | | | | | | | | 3.249 | 170.86 | 924.32 | 2.9235 | 0.07 | -0.05 | | Q(C) | EH(MV) | EB(MV) | PH | -DEH | -DER | | 3.536 | 170.76 | 923.25 | 2.9214 | 0.09 | -0.05 | | | | | | | | | 3.918 | 170.61 | 921.96 | 2.9186 | 0.11 | -0.06 | | 0.287 | 370.58 | 948.87 | 3.5823 | 0.14 | -0.03 | | 4.300 | 170.47 | 920.80 | 2.9156 | 0.14 | -0.06 | | 0.334 | 370.32 | 948.00 | 3.5778 | 0.14 | 0.02 | | 4.682 | 170.29 | 919.73 | 2.9126 | 0.14 | -0.07 | | 0.430 | 369.78 | 946.40 | 3.5690 | 0.12 | 0.07 | | 5.160 | 170.08 | 918.53 | 2.9087 | | -0.06 | | 0.526 | 369.23 | 945.00 | 3.5601 | 0.10 | 0.12 | | 5.638 | 169.87 | 917.44 | 2.9047 | 0.19 | -0.06 | | 0.621 | 368.69
368.15 | 943.66 | 3.5514
3.5426 | 0.07 | 0.08 | | 6.211 | 169.61 | 916.25 | 2.8998 | | -0.06 | | 0.717 | 367.61 | 942.48 | 3.5426 | 0.03 | 0.07 | | 6.784 | 169.32 | 915-18 | 2.8947 | 0.23 | -0.05 | | 0.908 | 367.09 | 940.35 | 3.5255 | 0.02 | 0.01 | | 7.453 | 168.99 | 914.03 | 2.8886 | | -0.05 | | 1.003 | 366.57 | 939.43 | 3.5171 | -0.05 | 0.01 | | 8.122 | 168.64 | 912.98 | 2.8824 | 0.28 | | | 1.099 | 366.05 | 938.55 | 3.5088 | -0.05 | -0.02 | | 9.747 | 168.24 | 911.90
910.78 | 2.8753
2.8672 | | -0.04
-0.03 | | 1.194 | 365.56 | 937.74 | 3.5007 | -0.06 | -0.02 | | 9.747 | 167.78 | 910.78
909.77 | 2.8591 | 0.32 | -0.03 | | 1.338 | 364.86 | 936.58 | 3.5007
3.4888 | -0.05 | -0.05 | | 11.562 | | 908.73 | 2.8501 | 0.37 | 0.0 | | 1.481 | 364.12 | 935.54 | 3.4772 | -0.11 | -0.05 | | 12.614 | 166.27 | 907.68 | 2.8404 | 0.39 | 0.01 | | 1.624 | 363.43 | 934.56 | 3.4659 | -0.13 | -0.07 | | 13.760 | 165.67 | 906.62 | 2.8299 | | 0.02 | | 1.768 | 362.77 | 933.65 | 3.4549 | -0.14 | -0.07 | | 15.003 | 165.04 | 905.57 | 2.8187 | 0.44 | 0.03 | | | | | | | | | 16.340 | 164.36 | 904.53 | 2.8070 | 0.46 | 0.04 | | | | | | | | | 17.774 | 163.65 | 903.50 | 2.7948 | 0.47 | 0.06 | | SATS 3. | | 818.51# | 0.05 | E = 1 | 57.36 | | 19.303 | 162.91 | 902.48 | 2.7822 | 0.47 | 0.06 | | | В | | | н | | | 21.023 | 162.11 | 901.43 | 2.7685 | 0.48 | 0.08 | | | н = | 0.4731 | | 8 = 0 | .0350 | | 22.838 | 161.14 | 900.40 | 2.7547 | 0.33 | 0.10 | U | | | | | | | | | | | | | | - 25 | .050 | | | | | | | | | Q(C) | EH(MV) | EB(MV) | PH | -DEH | -DEB | | SATS 6 | . E | = 423.69 | ± 0.02 | | | | | | | | | | | SATS 6 | . E | = 423.69 | ± 0.02 | | | | 0.191 | 353.06 | 949.31 | 3.3103 | -0.13 | 0.16 | | SATS 6 | В | | | | | | 0.191 | 353.06
352.94 | 949,31
947,12 | 3.3103
3.3077 | -0.13 | 0.16 | | | В | = 0.2033 | | | | | 0.191
0.287
0.334 | 353.06
352.94
352.88 | 949.31
947.12
946.15 | 3.3103
3.3077 | -0.13 | 0.16 | | E =-2
H | 17.29 H
0 | * 0.2033 | B * 0
0 | | | | 0.191
0.287
0.334
0.430 | 353.06
352.94
352.88
352.74 | 949.31
947.12
946.15
944.42 | 3.3103
3.3077
3.3063
3.3035 | -0.13
-0.09
-0.07
-0.05 | 0.16
0.11
0.08
0.04 | | E =-2 | В
17.29 Н | = 0.2033 | B = 0 | | | | 0.191
0.287
0.334 | 353.06
352.94
352.88 | 949.31
947.12
946.15
944.42 | 3.3103
3.3077
3.3063
3.3035 | -0.13
-0.09
-0.07
-0.05 | 0.16
0.11
0.08
0.04 | | E =-2
H | 17.29 H
0 | * 0.2033 | B * 0
0 | | | | 0.191
0.287
0.334
0.430
0.526
0.621 | 353.06
352.94
352.88
352.74
352.57
352.40 | 949.31
947.12
946.15
944.42
942.91
941.56 | 3.3103
3.3077
3.3063
3.3035
3.3007
3.2978 | -0.13
-0.09
-0.07
-0.05
-0.05 | 0.16
0.11
0.08
0.04
0.02 | | E =-2
H
a(c) | 8
17.29 H
0
E8(MV) | ≈ 0.2033
РН | -DER | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717 | 353.06
352.94
352.88
352.74
352.57
352.40
352.24
352.17 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81 | 3.3103
3.3077
3.3063
3.3035
3.3007
3.2978
3.2949 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05 | 0.16
0.11
0.08
0.04
0.02
0.0 | | E =-2
H | 17.29 H
0 | * 0.2033 | B * 0
0 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860 | 353.06
352.94
352.88
352.74
352.57
352.40
352.24
352.17
352.02 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77 | 3.3103
3.3077
3.3063
3.3035
3.3007
3.2978
3.2949
3.2949 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05 | 0.16
0.11
0.08
0.04
0.02
0.0 | | E =-2
H
G(C) | 8
17.29 H
0
E8(MV)
565.91 | # 0.2033
РН
3.6603 | B = 0
0
-DEB
0.05 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956 | 353.06
352.94
352.88
352.74
352.57
352.40
352.24
352.17
352.02
351.84 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77
937.80 | 3.3103
3.3077
3.3063
3.3036
3.3007
3.2978
3.2949
3.2949
3.2904
3.2904 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.05 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0 | | E =-2
H
G(C)
0.296
0.345
0.395 | B17.29 H
0
EB(MV)
565.91
563.95
562.25
560.77 | PH 3.6603 3.6550 3.6497 3.6443 | B = 0
0
-DEB
0.05
0.05
0.04 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051 | 353.06
352.94
352.88
352.74
352.57
352.40
352.24
352.17
352.02
351.84
351.69 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77
937.80
936.90 | 3.3103
3.3077
3.3063
3.3035
3.3037
3.2978
3.2999
3.2934
3.2904 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.05 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0 | | E =-2
H
G(C)
0.296
0.345
0.395
0.444
0.493 | B
17.29 H
0
EB(MV)
565.91
563.95
562.25
560.77
559.43 | PH 3.5503 3.6550 3.6443 3.6390 | B = 0
0
-DEB
0.05
0.05
0.04
0.04 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051 | 353.06
352.94
352.88
352.74
352.57
352.40
352.24
352.17
352.02
351.84
351.69
351.49 | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
939,81
938,77
937,80
936,90 | 3, 3103
3, 307
3, 3063
3, 3035
3, 3097
3, 2978
3, 2989
3, 2994
3, 2874
3, 2813 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.04
-0.02
0.01
0.0 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
-0.01
-0.02
-0.04 | | E =-2
H
C(C)
0.296
0.345
0.395
0.444
0.493
0.543 | B 17.29 H 0 0 ER(MV) 565.91 563.95 562.25 560.77 559.43 558.24 | PH 3.5603 3.6550 3.6497 3.6443 3.6390 3.6336 | 0 = 0
0 -DEB
0.05
0.05
0.05
0.04
0.02
0.02 | | | | 0+191
0+287
0+334
0+33
0+350
0+621
0+717
0+764
0+860
0+950
1+051
1+147
1+242 | 353.06
352.94
352.88
352.74
352.57
352.40
352.17
352.02
351.84
351.69
351.49 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77
937.80
936.90
936.90 | 3.3103 3.3077 3.3063 3.3035 3.3007 3.2978 3.2934 3.2934 3.2934 3.2813 3.2781 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.05
-0.01
0.00
0.01 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
-0.01
-0.02
-0.04 | | E ==2
H
Q(C)
0.296
0.345
0.395
0.444
0.493
0.543
0.592 | 8 H O O E O (NV) 565.91 563.95 562.25 560.77 559.43 558.24 557.16 | PH 3.5503 3.6550 3.6497 3.5443 3.6330 3.6336 3.6282 | B * 0 -DEH 0.05 0.05 0.04 0.04 0.02 0.02 | | | | 0 - 1 9 1
0 - 2 8 7
0 - 3 3 4
0 - 4 3 0
0 - 5 2 6
0 - 6 2 1
0 - 7 1 7
0 - 7 6 4
0 - 8 6 0
0 - 9 5 6
1 - 0 5 1
1 - 1 4 7
1 - 2 4 2
1 - 3 3 8 | 353.06
352.94
352.88
352.74
352.57
352.40
352.17
352.02
351.84
351.69
351.49
351.31 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77
937.80
936.90
936.90
935.31 | 3,3103 3,3077 3,3063 3,3035 3,3007 3,2978 3,2949 3,2934 3,2844 3,2813 3,2781 3,2781 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.05
-0.01
0.00
0.01 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
-0.01
-0.02
-0.04 | | E ==2
H
0(C)
0.296
0.345
0.395
0.444
0.493
0.543
0.543 | 8
17.29 H
0
E8(MV)
565.91
563.95
562.25
560.77
559.43
558.24
557.16 | PH 3.6603 3.6550 3.6497 3.6336 3.6336 3.6228 | 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.338 | 353.06
352.94
352.74
352.57
352.40
352.24
352.17
352.02
351.84
351.69
351.41
351.11 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77
937.80
936.90
936.90
935.31
934.59 | 3.3103 3.3077 3.3063 3.3035 3.3007 3.2949 3.2949 3.2844 3.284 3.2813 3.2751 |
-0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.04
-0.02
0.01
0.04
0.02
0.02 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
-0.01
-0.02
-0.04
-0.03
-0.03 | | E ==2
H
G(C)
0.296
0.345
0.395
0.444
0.493
0.543
0.592
0.642 | B17.29 H 0 E8(NY) 565.91 563.95 562.25 560.77 559.43 558.24 557.16 | PH 3.6603 3.6550 3.6497 3.6443 3.6390 3.6336 3.6282 3.6283 3.6175 | B = 0
0
-DEB
0.05
0.05
0.04
0.04
0.02
0.02
0.02
-0.01 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.433 | 353.06
352.94
352.88
352.74
352.40
352.24
352.17
352.02
351.84
351.69
351.49
351.41
351.11
350.97 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77
937.80
936.90
935.31
934.59
933.30 | 3.3103 3.3077 3.3063 3.3037 3.2949 3.2949 3.2934 3.2944 3.2813 3.2781 3.2781 3.2781 3.2781 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.04
-0.02
0.01
0.0
0.04
0.02
0.02 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | E m-2
H
Q(C)
0.296
0.345
0.345
0.444
0.493
0.592
0.642
0.691 | B
17.29 H
0
EB(MV)
565.91
562.25
560.77
559.43
558.24
557.16
556.14
555.24 | PH 3.5603 3.6550 3.6497 3.5443 3.6390 3.6336 3.6228 3.6228 3.6175 3.6121 | 0.05
0.05
0.05
0.05
0.04
0.02
0.02
0.02
-0.01
0.01 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.338 | 353.06
352.94
352.74
352.57
352.40
352.24
352.17
352.02
351.84
351.69
351.41
351.11 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77
937.80
936.90
936.90
935.31
934.59 | 3.3103 3.3077 3.3063 3.3035 3.3007 3.2949 3.2949 3.2844 3.284 3.2813 3.2751 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.04
-0.02
0.01
0.0
0.04
0.02
0.02 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
-0.01
-0.02
-0.04
-0.03
-0.03 | | E m-2
H G(C)
0.296
0.345
0.395
0.444
0.493
0.543
0.562
0.691
0.740
0.789 | B 17.29 H 0 0 E8(NY) S65.91 562.25 560.77 559.43 558.24 557.16 556.14 555.24 553.60 753.60 | PH 3.6603 3.6550 3.6497 3.6443 3.6336 3.6282 3.6228 3.6175 3.6027 | B = 0
0
-DEH
0.05
0.05
0.04
0.04
0.02
0.02
0.02
-0.01
0.01
0.02 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.433 | 353.06
352.94
352.88
352.74
352.40
352.24
352.17
352.02
351.84
351.69
351.49
351.41
351.11
350.97 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
939.81
938.77
937.80
936.90
935.31
934.59
933.30 | 3.3103 3.3077 3.3063 3.3037 3.2949 3.2949 3.2934 3.2944 3.2813 3.2781 3.2781 3.2781 3.2781 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.04
-0.02
0.01
0.0
0.04
0.02
0.02 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | E m-2
M
O(C)
0.296
0.345
0.395
0.444
0.493
0.592
0.642
0.642
0.642
0.740
0.789
0.839 | 8
17.29 H
0
E8(MV)
565.91
562.25
560.77
559.43
558.24
557.16
556.14
555.24
554.40
553.60 | PH 3.6603 3.6597 3.6443 3.6396 3.6336 3.6282 3.628 3.6175 3.6121 3.6067 3.6014 | 0.05
0.05
0.05
0.05
0.04
0.04
0.02
0.02
0.02
0.01
0.01
0.02 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.529 | 353.06
352.94
352.88
352.57
352.57
352.40
352.217
357.02
351.84
351.89
351.49
351.31
350.97
350.97
350.61 | 949.31
947.12
946.15
944.42
942.91
941.56
900.36
939.81
938.77
937.80
936.90
935.31
934.59
933.90
933.26 | 3.3103 3.3077 3.3063 3.3035 3.3097 3.2949 3.2934 3.2934 3.2844 3.2843 3.2781 3.2781 3.2783 3.2785 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.02
0.01
0.04
0.02
0.02
0.01
0.06
0.06 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | E =-2
H G(C)
0.296
0.345
0.395
0.444
0.493
0.543
0.542
0.691
0.789
0.789
0.888 | B 17.29 H 0 0 E8 (MV) 565.91 562.25 560.77 559.43 558.24 557.16 556.14 555.24 557.83 552.83 552.83 552.13 | PH 3.6603 3.6550 3.6497 3.6443 3.6336 3.6282 3.6175 3.61121 3.6067 3.6014 3.5961 | B = 0 -DEH 0.05 0.05 0.04 0.04 0.02 0.02 -0.01 0.01 0.02 0.02 0.02 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.433 | 353.06
352.94
352.88
352.74
352.57
352.40
352.17
352.02
351.69
351.69
351.43
351.43
351.43
350.07
350.61 | 949.31
947.12
946.15
944.42
942.91
941.56
940.36
938.77
937.80
936.90
936.90
935.31
934.59
933.90 | 3.3103 3.3077 3.3063 3.3035 3.3097 3.2949 3.2934 3.2934 3.2844 3.2843 3.2781 3.2781 3.2783 3.2785 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.04
-0.02
0.01
0.0
0.00
0.04
0.08 | 0.16
0.11
0.08
0.04
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | E =-2 H 0 (C) 0.296 0.345 0.395 0.444 0.493 0.543 0.5592 0.642 0.691 0.740 0.789 0.839 0.839 | 8 17-29 H 0 0 F6 (MV) 565-91 563-95 560-77 559-43 558-24 554-40 553-60 552-83 551-45 | PH 3.6603 3.6550 3.6497 3.6493 3.6390 3.6328 3.6228 3.6228 3.6121 3.6067 3.6014 3.5961 | B = 0
0 -DEH
0.05
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.529 | 353.06
352.94
352.88
352.74
352.57
352.40
352.17
352.10
351.69
351.69
351.31
350.97
350.61 | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
930,90
936,90
936,90
936,90
938,53
933,59
933,59
933,26
818,90 ± | 3.3103 3.3077 3.3063 3.3035 3.3097 3.2949 3.2934 3.2934 3.2844 3.2843 3.2781 3.2781 3.2783 3.2785 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.01
0.02
0.01
0.02
0.01
0.02
0.04 | 0.16
0.11
0.08
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | E =-2 M G(C) 0.296 0.345 0.345 0.444 0.493 0.592 0.694 0.789 0.789 0.789 0.888 0.938 | B 17.29 H 0 C 66 C 17.29 H 0 C 66 C 17.29 C 67.25 C 67.25 C 67.25 C 67.16 C 556.14 C 556.26 C 67.16 67 | = 0.2033
PH
3.6603
3.6550
3.6497
3.6343
3.6390
3.6336
3.6228
3.6121
3.6067
3.6012
3.5961
3.5909
3.5857 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
0.02
-0.01
0.01
0.02
0.02
0.02 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.529 | 353.06
352.94
352.88
352.74
352.57
352.40
352.17
352.10
351.69
351.69
351.31
350.97
350.61 | 949.31
947.12
946.15
944.42
942.91
941.56
900.36
939.81
938.77
937.80
936.90
935.31
934.59
933.90
933.26 | 3.3103 3.3077 3.3063 3.3035 3.3097 3.2949 3.2934 3.2934 3.2844 3.2843 3.2781 3.2781 3.2783 3.2785 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.04
-0.02
0.01
0.0
0.00
0.04
0.08 | 0.16
0.11
0.08
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | G(C) 0.296 0.345 0.395 0.404 0.403 0.503 0.509 0.601 0.740 0.603 0.603 0.700 0.803 0.908 0.908 | B 17.29 H O EB (MV) 565.91 563.95 562.25 560.77 559.43 556.14 555.14 555.24 553.60 552.83 553.60 552.83 550.85 549.64 | PH 3.6603 3.6550 3.6497 3.6493 3.6390 3.6328 3.6228 3.6228 3.6121 3.6067 3.6014 3.5961 | B = 0
0 -DEH
0.05
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.529 | 353.06
352.94
352.88
352.74
352.57
352.20
352.17
352.02
351.84
351.69
351.31
351.41
350.97
350.76 | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
930,90
936,90
936,90
936,90
938,53
933,59
933,59
933,26
818,90 ± | 3.3103 3.3077 3.3063 3.3035 3.3097 3.2949 3.2934 3.2934 3.2844 3.2843 3.2781 3.2781 3.2783 3.2785 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.02
0.01
0.00
0.02
0.02
0.02
0.04
0.08 | 0.16
0.11
0.08
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | E =-2 M G(C) 0.296 0.345 0.345 0.444 0.493 0.592 0.694 0.789 0.789 0.789 0.888 0.938 | B 17.29 H H H H H H H H H H H H H H H H H H H | PH 3.6603 3.6550 3.6493 3.6390 3.6382 3.6282 3.6175 3.6067 3.60961 3.5909 3.5857 3.5753 | B = 0
0
-DEH
0.05
0.05
0.04
0.02
0.02
0.02
0.01
0.02
0.02
0.02
0.02
0.02
0.03
0.01
0.03 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.529 | 353.06
352.94
352.88
352.74
352.57
352.20
352.17
352.02
351.84
351.69
351.31
351.41
350.97
350.76 | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
930,90
936,90
936,90
936,90
938,53
933,59
933,59
933,26
818,90 ± | 3.3103 3.3077
3.3063 3.3035 3.3097 3.2949 3.2934 3.2934 3.2844 3.2843 3.2781 3.2781 3.2783 3.2785 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.02
0.01
0.00
0.02
0.02
0.02
0.04
0.08 | 0.16
0.11
0.08
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | G(C) 0.296 0.345 0.395 0.444 0.493 0.593 0.592 0.691 0.740 0.789 0.888 0.938 0.937 1.086 1.128 | B 17.29 H H H H H H H H H H H H H H H H H H H | PH 3.6603 3.6550 3.6550 3.6393 3.6393 3.6328 3.6175 3.6212 3.6067 3.5961 3.5961 3.5953 3.5553 | B = 0
-DEB
0.05
0.05
0.04
0.02
0.02
0.01
0.01
0.02
0.02
0.02
0.00
0.01
0.03
0.01
0.01
0.01 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.764
0.866
1.051
1.147
1.242
1.338
1.433
1.422
1.624 | 353.06
352.94
352.87
352.74
352.77
352.87
352.87
352.17
359.02
351.84
351.31
351.11
350.97
350.76
350.61 | 949,31
947,12
946,15
946,42
942,91
941,56
940,36
939,81
938,77
937,80
936,08
935,31
936,59
933,59
933,59
933,56
818,90±
0.7674 | 3. 3103
3. 3077
3. 3063
3. 3035
3. 3007
3. 2978
3. 2949
3. 2904
3. 2904
3. 2813
3. 2781
3. 2781
3. 2785
3. 2653 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.04
-0.02
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 0.16
0.11
0.07
0.09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | G(C) 0.296 0.345 0.395 0.494 0.493 0.592 0.662 0.692 0.692 0.693 0.740 0.783 0.888 0.987 1.088 1.184 1.382 | B 17.29 H O O E 61 (MV) S 65.91 S 62.25 S 60.77 S 9.43 S 58.24 S 57.16 S 55.14 S 55.24 S 54.40 S 53.63 S 55.15 S 64.62 S 74.55 S 74.66 S 74.55 74.57 | PH 3.6603 3.6550 3.6497 3.6336 3.6393 3.6393 3.6393 3.6393 3.6393 3.6393 3.6393 3.6395 3.6121 3.6004 3.5961 3.5963 3.5857 3.5553 3.5456 | B = 0
0
-DEH
0.05
0.05
0.04
0.02
0.02
0.01
0.01
0.03
0.01
0.01
0.01
0.01 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.433
1.432
1.433 | 353.06
352.94
352.86
352.74
352.57
352.24
352.22
351.89
351.31
351.49
351.11
350.97
350.61
E = B
H = 0
EH(MV) | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
939,81
938,77
937,80
936,90
936,90
935,31
944,59
933,90
933,90
932,64
818,90±
0,7674 | 3, 3103 3, 307 7, 3063 3, 3035 3, 3007 3, 2078 3, 2078 3, 2034 3, 2034 3, 2044 3, 2813 3, 2750 3, 2653 0, 02 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.05
-0.04
-0.02
0.01
0.02
0.01
0.04
0.02
0.01
0.04
0.08
E = H | 0.16
0.11
0.08
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. | | G(C) 0.296 0.345 0.403 0.502 0.601 0.789 0.888 0.987 1.086 1.128 1.382 1.480 | B 17.29 H 70 0 0 0 1503.95 562.25 560.27 559.43 557.16 556.14 555.24 554.40 557.360 557.360 557.355.24 564.57 547.55 547. | PH 3.6603 3.650603 3.65497 3.64493 3.63493 3.6328 3.6328 3.6328 3.6328 3.6328 3.6328 3.6328 3.63553 3.63553 3.53553 3.53553 3.53553 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.01
0.03
0.01
0.00
0.01
0.01
0.01
0.01
0.01
0.01 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.333
1.529
1.624
SATS 4. | 353.00
352.94
352.94
352.77
352.57
352.40
352.27
352.40
351.21
351.69
351.69
351.31
350.07
350.07
350.07
350.061 | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
930,93
936,99
936,99
936,99
935,31
934,59
933,99
933,99
933,99
933,99
933,99
937,88
933,99
937,88
933,99
933,99
933,99 | 3. 3103
3. 3077
3. 3063
3. 3035
3. 3035
3. 2078
3. 2949
3. 2949
3. 2944
3. 2813
3. 2781
3. 2781
3. 2781
3. 2653 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.04
-0.02
0.01
0.04
0.02
0.01
0.06
0.08
E = H
B = 0 | 0.16 0.11 0.08 0.02 0.0 0.0 0.0 0.0 0.00 -0.01 -0.02 -0.04 -0.03 -0.03 -0.04 -0.05 -0.06 -0.07 | | G = -2 H G(C) 0-206 0-345 0-305 0-305 0-305 0-503 0-503 0-502 0-601 0-700 0-780 0-888 0-938 0-987 1-085 1-184 1-283 1-382 1-382 1-480 1-579 | B 17.29 M O O EG(MV) S65.91 S63.95 S62.95 S60.77 S59.43 S55.24 S57.16 S55.24 S55.24 S55.25 S60.85 S59.83 S59.83 S59.85 S59.85 S60.85 S40.62 S47.55 S40.62 S43.87 S43.80 | = 0.2033 PH 3.6603 3.6550 3.6497 3.6330 3.6383 3.6383 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6283 3.63857 3.8563 3.8563 3.8563 3.8563 | B =
0
0
-DEB
0.05
0.05
0.04
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0. | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.338
1.433
1.432
1.624
SATS 4. | 353.06
352.94
352.83
352.74
352.57
352.840
352.57
352.240
351.84
351.69
351.49
351.49
351.30
350.97
350.76
350.61 | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
939,81
938,77
937,80
936,90
936,90
935,31
944,59
933,90
933,90
933,90
933,90
932,64
818,90±
0,7674 | 3, 31 03 3, 307 3, 306 3, 3035 3, 3035 3, 3097 3, 2978 3, 2934 3, 2934 3, 2934 3, 2934 3, 2934 3, 2950 3, 2653 0, 2653 0, 2653 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.09
-0.01
0.00
0.02
0.01
0.06
0.08
E = 0
-0.19
-0.19
-0.16
-0.19 | 0.16 0.11 0.00 0.00 0.00 0.00 0.00 0.00 | | G(C) 0.296 0.345 0.493 0.493 0.592 0.691 0.789 0.898 0.998 1.086 1.128 1.382 1.480 1.579 1.777 | B 17.29 H 70 0 0 0 1503.95 502.25 500.77 559.43 557.16 556.14 555.24 554.40 557.350 552.13 551.45 560.85 547.75 546.56 548.55 547.55 54 | PH 3.6603 3.6503 3.6497 3.6443 3.6396 3.6328 3.6228 3.6228 3.6228 3.6228 3.6375 3.6121 3.5909 3.5857 3.5753 3.5855 3.5855 3.5855 3.5855 3.5855 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.01
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.333
1.529
1.624
SATS 4. | 353.00
352.94
352.93
352.74
352.57
352.40
352.27
351.69
351.69
351.69
351.13
350.07
350.61
E B B C C C C C C C C C C C C C C C C C | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
939,81
938,77
937,80
936,90
936,90
935,31
93,59
933,90
933,90
933,90
933,90
933,90
932,64
EB(MV)
912,40
911,40
910,54
909,65 | 3. 31 03
3. 3077
7. 3063
3. 3035
3. 3007
3. 2978
3. 2984
3. 2984
3. 2813
3. 2761
3. 2750
3. 27 | -0.13
-0.09
-0.07
-0.05
-0.05
-0.04
0.02
0.01
0.02
0.01
0.06
0.04
0.08
E = 0
0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 | 0.16 0.11 0.08 0.02 0.0 0.0 0.0 0.00 -0.01 -0.03 -0.03 -0.03 -0.04 -0.05 -0.05 -0.06 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 | | G =-2 H G(C) 0-206 0-345 0-345 0-345 0-403 0-503 0-502 0-601 0-700 0-789 0-888 0-938 0-987 1-988
1-988 | B 17.29 M O C EG(MV) S55.91 S50.3.95 S50.2.95 S60.77 S59.43 S55.24 S57.16 S55.24 S57.16 S55.45 S50.85 S50.85 S50.85 S50.85 S40.62 S48.55 S40.6 | = 0.2033 PH 3.6603 3.6550 3.6497 3.6353 3.6353 3.6328 3.6175 3.6223 3.6175 3.6223 3.6228 3.6175 3.6367 3.6363 3.63667 3.5363 3.5553 3.5456 3.5360 3.5267 3.5353 3.5456 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.01
0.0
0.03
0.01
0.01
0.01
0.02
0.02
0.02
0.03
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.0 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.766
0.905
1.1242
1.338
1.433
1.433
1.529
1.624
SATS 4. | 353.06
352.94
352.93
352.74
352.57
352.80
352.27
352.27
352.20
351.84
351.69
351.49
351.30
350.97
350.76
350.76
0
EH(HV)
173.09
172.52
171.34
171.34 | 949,31 947,12 946,15 944,42 942,91 941,56 940,36 938,77 936,09 936,08 935,31 934,59 933,90 933,26 818,90± 0.7674 EBI(MV) 912,40 911,40 911,40 911,40 910,54 909,65 | 3, 31 03
3, 3077
7, 3063
3, 3035
3, 3007
3, 2978
3, 2993
3, 2993
3, 2993
3, 2893
3, 2781
3, 2781
3, 2785
3, 2755
3, 2755
3, 2653 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.09 -0.09 0.01 0.06 0.02 0.01 0.06 0.08 E = 0 -0.19 -0.16 -0.12 -0.16 -0.19 -0.16 -0.10 -0.10 -0.10 | 0.16 0.11 0.00 0.00 0.00 0.00 0.00 0.00 | | C = -2 H G(C) 0.296 0.345 0.395 0.444 0.403 0.554 0.691 0.740 0.789 0.838 0.938 0.938 1.906 1.9 | B EG(MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557.16 555. 24 557.16 554. 60 554. 60 554. 71 544. 67 544. 67 544. 67 544. 67 544. 67 544. 67 | - 0.2033 PH 3.6653 3.6550 3.6497 3.6336 3.6328 3.6328 3.6175 3.6282 3.6175 3.6326 3.6328 3.6128 3.6228 3.6126 3.5360 3.53653 3.5553 3.5553 3.5553 3.5553 3.5553 3.5553 3.5553 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.333
1.529
1.624
SATS 4. | 353.00
352.94
352.83
352.73
352.57
352.40
352.17
357.02
351.63
351.31
351.11
351.11
350.07
350.07
350.07
173.09
EH(HV)
173.09
172.52
171.97
171.39
170.59
171.97 | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
939,81
938,77
937,80
936,90
935,31
935,31
935,31
933,90
933,90
933,90
933,90
932,64
EB(MV)
912,40
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
910,54
91 | 3, 31 03 3, 3077 3, 3063 3, 3035 3, 3007 3, 2978 3, 2934 3, 2934 3, 2813 3, 2781 3, 2781 3, 2780 3, 2781 3, 2780 3, 2781 3, 2780 3, 2781 3, 2780 3, 2781 3, 2883 3, 2781 3, 2883 3, 28 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.05 -0.06 -0.02 0.01 0.06 0.02 0.01 0.06 0.08 | 0-16 0-11 0-08 0-09 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0- | | G = -2
H G
(C)
0.296
0.345
0.305
0.404
0.403
0.553
0.564
0.700
0.700
0.700
0.803
0.987
1.086
1.203
1.205
1.205
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.2 | B 17.29 H O O C C C C C C C C C C C C C C C C C | - 0.2033 PH 3.6603 3.6550 3.6497 3.6336 3.6336 3.6336 3.6121 3.6067 3.6014 3.5909 3.5857 3.5753 3.5855 3.5855 3.5855 3.58553 | B = 0
0
-DEH
0.05
0.05
0.04
0.04
0.07
0.07
0.01
0.02
0.01
0.02
0.01
0.03
0.01
0.03
0.01
0.04
0.04
0.05
0.05
0.05
0.04
0.05
0.04
0.05
0.05 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.660
0.956
1.051
1.242
1.338
1.433
1.433
1.529
1.624
SATS 4. | 353.06
352.94
352.93
352.57
352.57
352.27
352.20
351.40
351.11
350.07
351.40
351.11
350.76
350.61 | 949,31 947,12 946,15 944,42 942,91 941,56 940,36 939,87 938,70 938,70 938,70 938,70 938,31 934,59 932,64 EB(MV) 912,40 911,40 911,40 911,40 90,65 909,65 | 3, 31 03 3, 3077 3, 3063 3, 3035 3, 3035 3, 2078 3, 2978 3, 2934 3, 2934 3, 2934 3, 2934 3, 2731 3, 2736 3, 2756 3, 2653 0, 02 PH 2, 0741 2, 0639 2, 9539 2, 9529 2, 9168 2, 0168 2, 90468 2, 90 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.05 -0.00 -0.02 -0.00 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.03 | 0-16 0-11 0-06 0-10 0-06 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0 | | (C) 0.296 0.345 0.395 0.444 0.403 0.552 0.691 0.789 0.888 0.988 0.987 1.1066 1.1066 1.1067 1.203 1.1069 1.107 1.203 1.107 1.203 1.107 1.203 1.203 1.203 | B EG (MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557. 16 555. 24 557. 16 555. 24 557. 16 554. 40 553. 60 559. 83 550. 85 | = 0.2033 PH 3.6653 3.6550 3.65497 3.6343 3.6393 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6383 3.5863 3.5360 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.860
0.956
1.051
1.147
1.242
1.333
1.429
1.624
SATS 4. | 353.06
352.94
352.83
352.73
352.57
352.40
352.17
357.02
351.63
351.63
351.31
351.11
350.07
350.07
350.07
350.07
173.09
EH(HV)
173.09
172.52
171.97
170.59
160.59
160.17 | 949,31
947,12
946,15
944,42
942,91
941,56
940,36
939,81
938,77
937,80
936,90
935,31
938,59
933,90
933,90
933,90
933,90
933,90
932,64
EB(MV)
912,40
910,54
912,40
910,54
909,65
909,63 | 3, 31 03 3, 3077 3, 3063 3, 3035 3, 3007 3, 2978 3, 2978 3, 2934 3, 2813 3, 2781 3, 2781 3, 2785 3, 2653 0, 02 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.05 -0.06 -0.02 0.01 0.06 0.02 0.01 0.06 0.08 E = 0 0 -0.08 0.01 -0.16 -0.12 -0.10 -0.06 -0.03 | 0.16 0.11 0.08 0.09 0.00 0.0 0.00 0.00 0.00 0.00 | | G = -2
H G (C)
0.296
0.345
0.305
0.404
0.403
0.553
0.564
0.700
0.700
0.700
0.803
0.987
1.086
1.203
1.205
1.205
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.207
1.2 | B 17.29 H O O C C C C C C C C C C C C C C C C C | - 0.2033 PH 3.6603 3.6550 3.6497 3.6336 3.6336 3.6336 3.6121 3.6067 3.6014 3.5909 3.5857 3.5753 3.5855 3.5855 3.5855 3.58553 | B = 0
0
-DEH
0.05
0.05
0.04
0.04
0.07
0.07
0.01
0.02
0.01
0.02
0.01
0.03
0.01
0.03
0.01
0.04
0.04
0.05
0.05
0.05
0.04
0.05
0.04
0.05
0.05 | | | | 0.191
0.287
0.334
0.430
0.526
0.621
0.717
0.764
0.600
0.956
1.051
1.137
1.138
1.333
1.529
1.624
SATS 4. | 353.06 352.94 352.93 352.83 352.57 352.40 352.17 352.17 352.16 351.16 351.11 350.76 350.61 | 949,31 947,12 946,15 944,42 942,91 941,56 940,36 930,81 936,70 937,80 935,31 936,70 933,90 934,50 933,90 932,64 EB(MV) 911,40 911,40 911,40 911,40 910,65 909,65 909,65 909,65 | 3, 31 03 3, 3077 3, 3063 3, 3035 3, 3007 3, 2978 3, 2903 3, 2903 3, 2804 3, 2807 3, 2804 3, 2807 3, 2805 3, 2653 0, 02 PH 2, 0741 2, 0639 2, 09429 2, 09429 2, 09429 2, 09468 2, 0904 2, 0904 2, 0904 2, 0904 2, 0904 2, 0904 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.05 -0.06 -0.02 -0.01 -0.01 -0.04 -0.02 -0.01 -0.08 -0.04 -0.08 | 0-16 0-11 0-00 0-00 0-00 0-00 0-00 0-00 | | (C) 0.296 0.345 0.395 0.444 0.403 0.552 0.691 0.789 0.888 0.988 0.987 1.1066 1.1066 1.1067 1.203 1.1069 1.107 1.203 1.107 1.203 1.107 1.203 1.203 1.203 | B EG (MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557. 16 555. 24 557. 16 555. 24 557. 16 554. 40 553. 60 559. 83 550. 85 | = 0.2033 PH 3.6653 3.6550 3.65497 3.6343 3.6393 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6383 3.5863 3.5360 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | | 0.191 0.287 0.334 0.430 0.526 0.621 0.717 0.714 0.050 1.051 1.147 1.242 1.338 1.433 1.433 1.433 1.432 1.024 SATS 4. | 353.06
352.94
352.83
352.83
352.73
352.83
352.84
351.89
351.89
351.89
351.31
350.97
350.61
E = B
H = C
EH(MV)
173.09
171.59
171.59
171.99
171.99
171.99
171.99
171.99
169.17
168.36
167.58
168.36 | 949,31 947,12 946,15 944,42 942,91 941,56 940,36 950,77 937,80 936,90 936,90 936,90 936,90 936,90 936,90 936,90 936,77 937,80 936,90 936,70 937,80 936,70 937,80 936,70 93 | 3, 31 03 3, 3077 3, 3063 3, 3035 3, 3007 3, 2978 3, 2934 3, 2813 3, 2781 3, 2781 3, 2783 3, 2781 3, 2750 3, 2718 3, 2685 3, 2653 0, 02 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.05 -0.06 -0.02 -0.01 -0.06 | 0-16 0-11 0-08 0-09 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0- | | (C) 0.296 0.345 0.395 0.444 0.403 0.552 0.691 0.789 0.888 0.988 0.987 1.1066 1.1066 1.1067 1.203 1.1069 1.107 1.203 1.107 1.203 1.107 1.203 1.203 1.203 | B EG (MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557. 16 555. 24 557. 16 555. 24 557. 16 554. 40 553. 60 559. 83 550. 85 | = 0.2033 PH 3.6653 3.6550 3.65497 3.6343 3.6393 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6383 3.5863 3.5360 | B = 0
0 -DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | | 0.191 0.287 0.334 0.430 0.526 0.621 0.717 0.764 0.860 0.956 1.051 1.132 1.333 1.529 1.624 SATS 4. 0(C) 0.142 9.312 0.427 1.224 1.234 1.256 1.257 1.6.404 17.359 | 353.06 352.94 352.93 352.83 352.57 352.40 352.17 357.02 351.64 351.11 350.07 350.66 E B B C C C C C C C C C C C C C C C C C | 949,31 947,12 946,15 944,42 942,91 941,56 940,36 930,81 936,70 936,90 935,90 933,90 933,90 933,90 933,90 933,90 931,90 931,11 941,11
941,11 94 | 3, 31 03 3, 3077 7, 3063 3, 3035 3, 3035 3, 2078 3, 2978 3, 2984 3, 2884 3, 2885 3, 2885 3, 2653 0, 02 PH 2, 9741 2, 9639 2, 9539 2, 9 | -0.13 -0.00 -0.07 -0.05 -0.05 -0.05 -0.05 -0.09 0.01 0.00 0.02 0.01 0.06 0.06 0.06 0.06 0.06 0.06 0.06 | 0.16 0.11 0.08 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | (C) 0.296 0.345 0.395 0.444 0.403 0.552 0.691 0.789 0.888 0.988 0.987 1.1066 1.1066 1.1067 1.203 1.1069 1.107 1.203 1.107 1.203 1.107 1.203 1.203 1.203 | B EG (MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557. 16 555. 24 557. 16 555. 24 557. 16 554. 40 553. 60 559. 83 550. 85 | = 0.2033 PH 3.6653 3.6550 3.65497 3.6343 3.6393 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6383 3.5863 3.5360 | B = 0
0 -DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | | 0.191 0.287 0.334 0.430 0.526 0.621 0.711 0.7060 0.056 1.051 1.147 1.242 1.338 1.433 1.433 1.433 1.432 1.624 SATS 4. Q(C) 9.142 9.810 0.479 11.244 12.199 11.244 12.199 11.245 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 11.150 | 353.06
352.94
352.83
352.73
352.73
352.27
352.27
352.20
351.84
351.89
351.31
351.19
351.31
350.76
350.61
E = E = E = E = E = E = E = E = E = E = | 949,31 947,12 946,15 944,42 942,91 941,56 940,30 950,90 936,90 936,90 935,31 934,59 933,90 933,26 818,90± 0.7674 EBI(MV) 912,40 911,40 910,54 909,65 907,74 909,67 909,67 909,67 909,67 909,67 | 3, 31 03 3, 3077 3, 3063 3, 3035 3, 3035 3, 2078 3, 2078 3, 2034 3, 2034 3, 2034 3, 2034 3, 2034 3, 2035 3, 2781 3, 2653 0, 2716 3, 2653 0, 2030 2, 20 | -0.13 -0.09 -0.07
-0.05 -0.05 -0.05 -0.05 -0.06 -0.04 -0.02 -0.01 -0.00 -0.04 -0.02 -0.01 -0.04 -0.02 -0.01 -0.04 -0.02 -0.01 -0.04 -0.02 -0.04 | 0.16 0.11 0.08 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | (C) 0.296 0.345 0.395 0.444 0.403 0.552 0.691 0.789 0.888 0.988 0.987 1.1066 1.1066 1.1067 1.203 1.1069 1.107 1.203 1.107 1.203 1.107 1.203 1.203 1.203 | B EG (MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557. 16 555. 24 557. 16 555. 24 557. 16 554. 40 553. 60 559. 83 550. 85 | = 0.2033 PH 3.6653 3.6550 3.65497 3.6343 3.6393 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6383 3.5863 3.5360 | B = 0
0 -DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | | 0.191 0.287 0.334 0.4330 0.526 0.621 0.717 0.766 0.860 0.806 0.806 1.142 1.142 1.338 1.433 1.433 1.432 1.524 SATS 4. G(C) 9.142 9.810 10.479 11.244 17.356 17.3567 16.404 17.3567 | 353.06 352.94 352.93 352.83 352.73 352.40 352.17 352.10 351.10 351.11 350.97 351.13 350.76 350.61 | 949,31 947,12 946,15 944,42 942,91 941,56 940,36 935,90 936,90 | 3, 31 03 3, 3077 3, 3063 3, 3035 3, 3035 3, 2078 3, 2978 3, 2934 3, 2934 3, 2781 3, 2781 3, 2785 3, 2653 0, 278 2, 2653 0, 274 2, 2653 2, 2934 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.05 -0.00 -0.02 -0.02 -0.02 -0.02 -0.03 -0.04 -0.08 -0.04 -0.08 -0.08 -0.09 | 0.16 0.11 0.08 0.09 0.09 0.00 0.00 0.00 0.00 0.00 | | (C) 0.296 0.345 0.395 0.444 0.403 0.552 0.691 0.789 0.888 0.988 0.987 1.1066 1.1066 1.1067 1.203 1.1069 1.107 1.203 1.107 1.203 1.107 1.203 1.203 1.203 | B EG (MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557. 16 555. 24 557. 16 555. 24 557. 16 554. 40 553. 60 559. 83 550. 85 | = 0.2033 PH 3.6653 3.6550 3.65497 3.6343 3.6393 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6383 3.5360 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | | 0.191 0.287 0.334 0.430 0.526 0.621 0.717 0.764 0.860 0.956 1.051 1.142 1.333 1.524 1.624 SATS 4. 0(C) 9.142 9.810 10.479 11.244 12.199 13.3155 14.117 15.257 14.137 15.259 | 353.06 352.94 352.93 352.85 352.73 352.57 352.40 352.17 357.02 351.84 351.31 351.13 351.31 351.37 350.07 350.061 EH(MY) 173.09 EH(MY) 173.09 172.05 171.97 171.34 170.59 169.67 169.67 160.56 166.68 166.69 166.63 166.63 | 949,31 947,12 946,15 944,42 942,91 941,56 940,36 939,81 938,77 937,80 935,90 935,90 935,90 935,90 935,90 935,90 937,90 | 3. 31 03 3. 3077 3. 3063 3. 3035 3. 3035 3. 2078 3. 2078 3. 2084 3. 2813 3. 2758 3. 2758 3. 2758 3. 2759 3. 27 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.05 -0.05 -0.00 -0.04 -0.02 -0.04 -0.02 -0.04 -0.02 -0.04 -0.02 -0.04 -0.03 -0.04 -0.04 -0.10 | 0.16 0.11 0.07 0.09 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | | (C) 0.296 0.345 0.395 0.444 0.403 0.552 0.691 0.789 0.888 0.988 0.987 1.1066 1.1066 1.1067 1.203 1.1069 1.107 1.203 1.107 1.203 1.107 1.203 1.203 1.203 | B EG (MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557. 16 555. 24 557. 16 555. 24 557. 16 554. 40 553. 60 559. 83 550. 85 | = 0.2033 PH 3.6653 3.6550 3.65497 3.6343 3.6393 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6383 3.5360 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | | 0.191 0.287 0.334 0.4330 0.526 0.621 0.717 0.766 0.860 0.806 0.806 1.142 1.142 1.338 1.433 1.433 1.432 1.524 SATS 4. G(C) 9.142 9.810 10.479 11.244 17.356 17.3567 16.404 17.3567 | 353.06 352.94 352.93 352.83 352.73 352.40 352.17 352.10 351.10 351.11 350.97 351.13 350.76 350.61 | 949,31 947,12 946,15 944,42 942,91 941,56 940,36 935,90 936,90 | 3, 31 03 3, 3077 3, 3063 3, 3035 3, 3035 3, 2078 3, 2978 3, 2934 3, 2934 3, 2781 3, 2781 3, 2785 3, 2653 0, 278 2, 2653 0, 274 2, 2653 2, 2934 | -0.13 -0.09 -0.07 -0.05 -0.05 -0.05 -0.05 -0.00 -0.02 -0.02 -0.02 -0.02 -0.03 -0.04 -0.08 -0.04 -0.08 -0.08 -0.09 | 0.16 0.11 0.08 0.09 0.09 0.00 0.00 0.00 0.00 0.00 | | (C) 0.296 0.345 0.395 0.444 0.403 0.552 0.691 0.789 0.888 0.988 0.987 1.1066 1.1066 1.1067 1.203 1.1069 1.107 1.203 1.107 1.203 1.107 1.203 1.203 1.203 | B EG (MV) 565. 91 565. 91 563. 95 562.25 560.77 559. 43 555. 24 557. 16 555. 24 557. 16 555. 24 557. 16 554. 40 553. 60 559. 83 550. 85 | = 0.2033 PH 3.6653 3.6550 3.65497 3.6343 3.6393 3.6282 3.6175 3.6282 3.6175 3.6283 3.6283 3.6283 3.6283 3.6283 3.6383 3.5360 | B = 0
0
-DEB
0.05
0.05
0.04
0.02
0.02
-0.01
0.02
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. | | | centration ranges covered are visualized in Fig. 1 as curves $\lg B$ ($\lg b$)_H. The evaluation was carried out by means of the least squares computer program LETAGROP ETITR.¹³⁻¹⁵ The analytical concentrations of tin and hydrogen ions, B and H, respectively, were as- sumed to be correct, and the parameters Typ=3 and val=6 in the Letagrop program ¹⁵ were chosen. The free concentrations, b and h, were calculated by successive approximation from eqns. (5) and (6), using the measured value of E_{H}° and the estimated values of $^*\beta_{pq}$ and E_{B}° . Acta Chem. Scand. A 30 (1976) No. 9 Fig. 1. Survey of concentration ranges studied in 6 titrations, $\lg B (\lg b)_H$. B and b are expressed in mM (Table 1). Table 2. Literature survey of hydroxy-tin(II) complexes in 3 M NaClO₄. | Tobias | Liang et al. a | This work | |--|--|---| | -3.92 ± 0.15
-4.45 ± 0.15
-6.77 ± 0.03 | $-4.58 \pm 0.41 \\ -6.85 \pm 0.04 \\ -6.66 \pm 0.18$ | $\begin{array}{c} -3.70 \pm 0.02 \\ - \\ -6.81 \pm 0.03 \\ - \end{array}$ | ^a Recalculation of Tobias data. As starting values of the equilibrium model, Tobias' values (Table 2) for $*\beta_{11}$, $*\beta_{22}$ and $*\beta_{43}$ were used. These constants were varied (common parameters) together with E_B° (group parameter) to minimize the errors squares sum $U = \sum (E_{B,\text{cal}} - E_B)^2$. In these calculations the species $\text{Sn}_2(\text{OH})_2^{2+}$ was rejected, and the lowest errors squares sum was obtained for $$\lg *\beta_{11} = -3.70 \pm 0.02 \tag{7}$$ $$\lg *\beta_{43} = -6.81 \pm 0.03 \tag{8}$$ The uncertainties furnished by the program correspond to three times the "standard deviation" of the constant. The agreement between the calculated and experimental values $DEB = E_{B,cal} - E_B$ and $DEH = E_{B,cal} - E_B$ is given in the last two columns in Table 1. To illustrate the complex formation the distribution diagrams $\sum_{i=1}^{i} x_i = f(pH)_B$, i=1, 2, 3 were constructed (Fig. 2), where x_i represents the fraction of the total amount of tin present in the three species, Sn^{2+} (i=1), SnOH^+ (i=2), and $\operatorname{Sn}_3(\operatorname{OH})_4^{2+}$ (i=3). The distribution of the complexes was calculated with the Haltafall program 18,19 and plotted 20 with an IBM $^{370}/145$ computer. The diagrams in Fig. 2a-2d cover the concentrations studied in the present work. In Fig. 2e the curves have been extrapolated to the highest concentration used in Tobias' measurements to enable a comparison between the two investigations. The agreement of the present results with the equilibrium model proposed by Liang et al.2 was also tested. Theoretical curves, using their values, were compared with the experimental values $\eta(pH)_B$ from Tobias' and the lg $B(\lg b)_H$ data from the present work. At low values of B, the theoretical curves deviated markedly from the experimental points, indicating that SnOH+ should not be neglected or replaced by $Sn_2(OH)_3^+$. Letagrop calculations using the equilibrium constants found by Liang et al., as initial values, were also carried out. When these constants and E_B° were varied to find the "best" values, the error squares sum became much higher than that obtained with (7) and (8). This was due to deviations between the calculated and measured E_B values, which were larger the lower the value of B. The "best" value of lg $*\beta_{43}$ also differed considerably from the starting value (ca. 0.25 units) and $\sigma(*\beta_{43})$ became ca. ten times higher than the value reported in Table 2. Attempts to interpret the present data in terms of the formation of $SnOH^+$, $Sn_2(OH)_3^+$ and $Sn_3(OH)_4^{2+}$ also failed. On the other hand, an accurate determination of the polynuclear species formed, would require study of a wider range of B. The simplest interpretation of the present data is, however, obtained, by assuming the formation of the single polynuclear complex $Sn_3(OH)_4^{2+}$. ## DISCUSSION In this investigation the formation of the hydrolysis products $\operatorname{Sn_3(OH)_4^{2+}}$ and $\operatorname{SnOH^+}$ Acta Chem. Scand. A 30 (1976) No. 9 Fig. 2. The distribution of Sn(II) between the species formed, x_i is the fraction of the total amount of tin present in the three species, $\operatorname{Sn}^{2+}(i=1)$, $\operatorname{SnOH}^+(i=2)$ and $\operatorname{Sn}_3(\operatorname{OH})_4^{2+}(i=3)$. The curves have been calculated with the equilibrium constants $\operatorname{lg} *\beta_{11} = -3.70$ and $\operatorname{lg} *\beta_{43} = -6.81$. Acta Chem. Scand. A 30 (1976) No. 9 previously suggested by Tobias ¹ has been confirmed, and a more accurate value of $\lg *\beta_{11}$ has been determined. Since low tin(II) concentrations were used, it was possible to study regions where either SnOH+ or Sn₃(OH)₄²⁺ were dominant. Tobias worked at rather high tin concentrations, and was therefore restricted to regions where mainly Sn₃(OH)₄²⁺ was formed. In the present work the tin ions were generated through electrolysis, since very low values of B were required. The titration techniques in the present investigation also differed from those used by Tobias. In Tobias' measurements solutions of NaHCO3 were added, the tin(II) concentration being kept constant. In the present work the titrations were performed at constant H levels, the tin(II) ions being generated in situ by electrolysis. In view of the differences between the methods of investigation, the agreement between the values for $\lg *\beta_{43}$ is satisfactory. Whereas SnOH+ was present only in minor amounts in Tobias' work, in the present study it was the predominant complex, especially at low values of B (Fig. 2a-d). It is thus reasonable that $\lg * \beta_{11}$ should be obtained with better accuracy in the present work. The lowest tin(II) concentration studied by Tobias was B=2.5 mM, and he has reported experimental values $\eta(pH)_B = 2.5$ from two titrations. If these experimental data are compared with the theoretical curves obtained, using the values in Table 2, a poor fit is obtained, for pH<2.7, for all the models proposed. On the other hand, a reasonably good fit is obtained for one of his titrations, when pH < 2.2, if the equilibrium model from the present work is used. Tobias has, however, reported that the amalgam electrodes did not function satisfactorily for B < 2.5 mM. Even for B = 2.5 mM one might suspect erroneous emf values, since there was a marked deviation between the experimental values $\eta(pH)_B = 2.5$ in the two titrations reported. Tobias completed one of these titrations with a back titration. Even here the deviation from the forward titration is evident for pH<2.4. The problems entailed in working with amalgam electrodes at low Sn(II) concentrations have been overcome in the present work. A possible explanation of these difficulties is given in Ref. 6. Dimerization of mononuclear monohydroxo complexes is fairly common, and in accordance with earlier investigations 1 Sn₂(OH)₂2+ was expected to be formed.
When $\lg *\beta_{22}$ was varied in the Letagrop calculations, $Sn_2(OH)_2^{2+}$ was, however, rejected. If Sn₂(OH)₂²⁺ was formed, its concentration was too low to evaluate its stability constant. Acknowledgements. The author is most grateful to Professor Georg Lundgren for all the facilities placed at her disposal, for stimulating discussions and for valuable comments concerning the manuscript. She also wishes to thank many colleagues, especially Drs. Jan Berggren and Olle Börtin, Ing. János Kovacs and Mr. Lars Lagerqvist for fruitful discussions and helpful suggestions during the course of the work. Fil.lic. Ove Lindgren's help with the computer programming is gratefully acknowledged. Thanks are also due to Mrs. Birgitta Carlsson for experimental assistance, to Dr. Susan Jagner for revising the English text of this paper, and to Mrs. Margareta Johansson, who has kindly typed the manuscript. This work has been partly financed by the Swedish Natural Science Research Council (Contract No. 2318). ## REFERENCES - 1. Tobias, R. S. Acta Chem. Scand. 12 (1958) 198. - 2. Liang, C.-C. and Tu, Y.-M. Russ. J. Inorg. Chem. 9 (1964) 727. - 3. Mesmer, R. E. and Irani, R. R. J. Inorg. Nucl. Chem. 28 (1966) 493. - 4. Donaldson, J. D. Prog. Inorg. Chem. 8 (1967). - 5. Gmelin, Handbuch der Anorganischen Chemie, 8 Aufl., Zinn, Teil C1, p. 54. - 6. Gobom, S. Acta Chem. Scand. A 30 (1976) - 7. Gobom, S. and Kovács, J. Chem. Scr. 2 - (1972) 103. 8. Mark, W. Acta Chem. Scand. To be published. - 9. Biedermann, G. and Sillén, L. G. Ark. Kemi 5 (1953) 425. - Biedermann, G. and Ciavatta, L. Ark. Kemi 22 (1964) 253. Gran, G. Analyst 77 (1952) 661. - 12. Biedermann, G. Ark. Kemi 9 (1956) 277. - 13. Ingri, N. and Sillén, L. G. Ark. Kemi - (1964) 97. 14. Arnek, R., Sillén, L. G. and Wahlberg, O. Ark. Kemi 31 (1969) 353. - 15. Brauner, P., Sillén, L. G. and Whiteker, R. Ark. Kemi 31 (1969) 365. - 16. Sillén, L. G. Acta Chem. Scand. 16 (1962) - 17. Dunsmore, H., Hietanen, S. and Sillén, L. G. Acta Chem. Scand. 17 (1963) 2644. - 18. Ingri, N., Kakolowicz, W., Sillén, L. G. and Warnqvist, B. Talanta 14 (1967) 1261. - Dyrssen, D., Jagner, D. and Wengelin, F. Computer Calculation of Ionic Equilibria and Titration Procedures, Almqvist & Wiksell, Stockholm 1968. - 20. Sjölin, L. Private communication. Received June 10, 1976.