Reduction of Phosphinoylacetonitriles to Phosphinoacetonitriles

OTTO DAHL and FLEMMING KOLD JENSEN

Department of General and Organic Chemistry, The H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

Four phosphinoacetonitriles, R₂PCH₂CN, have been prepared from the corresponding phosphine oxides by reduction with diphenylsilane. Their reactivities have been investigated. The results show that a cyanomethyl substituent lowers both the nucleophilic reactivity and the rate of oxidation of a tertiary phosphine.

Cyano groups are strong electron withdrawing substituents which generally lower the nucleophilic reactivity of nearby nucleophilic centers. Thus P(CH₂CH₂CN)₃ is a much weaker nucleophile than Et₃P and even Ph₃P.¹ A cyanomethyl substituent is expected to lower the nucleophilic reactivity more than a 2-cyanoethyl substituent, but not so strongly as a directly bonded cyano group. For example, the phosphorus atom in P(CN)₃ has lost nearly all nucleophilic properties and becomes electrophil-Cyanomethylphosphines, $R_nP(CH_2CN)_{2-n}$ are virtually unknown in the literature. Two compounds, P(CH2CN)3 and Ph2PCH2-CN,4 have been mentioned in patents, but neither physical data nor preparative directions have been given. As a part of a study of the preparation and properties of cyanomethylphosphines we now describe some phosphinoacetonitriles, II, prepared by the following sequence:

The first step is the well-known Arbuzov reaction which has been shown to give high

Acta Chem. Scand. B 29 (1975) No. 8

yields of Ia⁵ and Id.⁶ When applied to Prⁱ₂-POEt the expected compound, Ib, was isolated in 80 % yield, together with a small amount of Prⁱ₂P(O)Cl. However, Bu^t₂POEt gives equal amounts of Bu^t₂P(OEt)CHCN and Bu^t₂-P(O)Cl. Phosphine oxide Ic is obtained only by subsequent addition of HCl to this mixture. This deviation from the normal Arbuzov reaction is ascribed to competitive attack by R₂POEt on the chlorine atom of ClCH₂CN when R is sterically demanding. The reaction will be described in detail in a forthcoming report.⁷

The last step is the reduction of the phosphinoylacetonitriles I to the phosphinoacetonitriles II. Whereas lithium aluminium hydride could not be used in presence of cyano groups, diphenylsilane was found to reduce I to II in high yields at 150-240 °C.

Silanes have been used previously for the reduction of various phosphoryl compounds to primary, secondary, or tertiary phosphines.^{8,9} We attempted similar reductions of Ph(EtO)-P(O)CH₂CN (to PhPHCH₂CN) and (EtO)₂-P(O)CH₂CN (to PH₂CH₂CN) with diphenylsilane. However, after 4 h at 160-190 °C only CH₂CN (ca. 40 and 60 %, resp.) could be isolated by distillation.

The phosphines II were characterized by ^{31}P NMR, ^{1}H NMR and IR spectroscopy (Table 1). The phosphorus chemical shifts are displaced high-field relative to the phosphine oxides I, and show the expected 10 variation with the substituents R. The coupling constants $^{2}J_{\rm PH}$ of II are smaller than those of I, as generally found for $^{2}J_{\rm PH}$ of methylphosphines relative to methylphosphine oxides. The small

Table 1. 31P NMR, 1H NMR, and IR data a for phosphinoylacetonitriles and phosphinoaceto-

No.	Compound	$\delta_{ extbf{P}}$	$\delta_{ extbf{H}}{}^{b}$	$^{2}J_{\mathrm{PH}}{}^{b}$	v _{CN}
Ia	Et,P(O)CH,CN	47.3	2.96	14.2	2252
Ib	Pri P(O)CH CN	53.7	2.84	13.5	2249
Ic	But,P(O)CH,CN	58.2	2.82	12.6	2248
Id	Ph.P(O)CH.CN	25.0	3.39	15.1	2253
IIa		- 24.4	2.42	5.1	2234
IIb	Pri PCH CN	0.7	2.36	4.5	2238
IIc	But PCH CN	27.0	2.36	2.5	2243
IId		-17.8	2.89	4.4	2242

a NMR: Ca. 10 % solutions in CDCl₃ at ca. 30 °C, chemical shifts in ppm relative to internal TMS $(\delta_{\rm H})$ or external 85 % ${\rm H_3PO_4}$ $(\delta_{\rm P})$, coupling constants (J) in Hz. Chemical shifts are positive for low-field shifts. IR: Ca. 10 % solutions in CHCl₃ at ca. 25 °C, ν in cm⁻¹. ^b For the CH₂CN group.

values of ${}^{2}J_{PH}$ found for $R_{2}P(O)CH_{2}X$ compounds where X is an electronegative substituent 11 are not observed in the case of I. The presence of nitrile groups are evident from the sharp band found in the IR spectra in the 2235 - 2255 cm⁻¹ region.¹² IIa was further characterized by reaction with ethyl bromide to give Et₃P+CH₂CN Br-, which was indentical with the compound obtained from Et, P and BrCH, CN.

The nucleophilic reactivity of compounds II are low, as expected. Although IIa dissolves in CS, to give a red solution, no adduct could be isolated. Compounds IIb and IIc gave only faintly red solutions. Alkyl halides react slowly with IIa-d to give quaternary salts. Kinetic measurements on the reaction of IId with EtI in acetone at 35 °C, using the conductivity method of Henderson and Buckler,1 showed, that IId reacts 8 times slower than Ph₃P and 22 times slower than Ph₂EtP. From the equation given by Henderson and Buckler¹ a Taft σ^* value of +1.7 for the CH₂CN group is calculated. This is in agreement with the σ^* value of +1.71 given by Stevenson and Williamson.13

The phosphines II are oxidized by exposure to air, although slowly. Thus only 30 % of IId was oxidized to Id when a few drops of IId was exposed to air on a watchglass for 72 h. The relative rates of oxidation of II in an oxygen atmosphere, initiated by azobis-

isobutyronitrile (AIBN), were estimated by competition experiments. IId was mixed with approximately equal amounts of IIa, IIb, IIc, or Ph₃P and the mixtures were oxidized at ca. 100 °C with a deficit of oxygen in the presence of AIBN. The ratios I/II were determined by NMR. Only small amounts of oxidation products other than I were observed. Assuming the same rate expressions (first order in R₃P) for these oxidation reactions, relative rate constants were calculated:

Compound $k_{\rm rel.}$ Et,PCH,CN 6.2Pri2PCH2CN 2 But.PCH.CN 1.1 Ph,PCH,CN 1.0 Ph,P 1.7

Although data for comparison are scarce in the literature,14,15 these results indicate that (i) a cyanomethyl group reduces the rate of oxidation of a phosphine (Ph.PCH.CN <Ph₃P and, presumably, Ph₃P < Ph₂EtP),(ii) there seems to be a steric effect on the rate $(Et_2PCH_2CN > Pr_2PCH_2CN > Bu_2PCH_2CN).$

EXPERIMENTAL

Analyses were carried out by the Microanalysis Department of this laboratory. IR spectra were obtained on a Perkin Elmer 337 Grating Infrared Spectrometer. NMR spectra were recorded on a Bruker HX-90 E Spectrometer. All NMR spectra were run in CDCl₃ at ca. 30 °C with internal deuterium lock on CDCl₂. Chemical shifts (ppm) are relative to internal TMS for ¹H spectra ($\delta_{\rm H}$) and external 85 % H₃PO₄ for ³¹ P spectra ($\delta_{\rm P}$), and are given as positive for lowfield shifts. The $\delta_{\rm P}$ values are in most cases obtained from 'H' spectra by ⁸¹P selective decoupling, and all assignments of coupling to phosphorus have been verifield by ³¹P decouplings.

Phosphines and phosphinites were handled in a nitrogen atmosphere. The following compounds were prepared according to the literature: Pri₂POEt, is Et₂P(O)CH₂CN, But₂P-(O)CH₂CN, Ph₂P(O)CH₂CN, Ph(EtO)P(O)-CH₂CN, rand (EtO)₂P(O)CH₂CN. rand (EtO)₂P(O)CH₂CN.

P.P.Diisopropylphosphinoylacetonitrile (Ib). Pri₂POEt (16.2 g, 0.10 mol) was added in ca. 2 ml portions to slightly heated (ca. 50 °C) ClCH₂CN (8.3 g, 0.11 mol) with stirring. The reaction was strongly exothermic and a reflux condenser was necessary. The reaction mixture was distilled in vacuo through a Claisen head. A forerun, b.p. 61-63 °C/0.5 mmHg (0.5 g)

consisted mainly of $\text{Pr}^{i}_{2}\text{P}(\text{O})\text{Cl}$ (lit. 19 b.p. 50 °C/0.2 mmHg. NMR: CH_{3} : δ_{H} 1.15 – 1.50, multiplet, CH: δ_{H} 2.36, ${}^{2}J_{\text{PH}}$ ca. 7 Hz, ${}^{3}J_{\text{HH}}$ ca. 7 Hz, in good agreement with literature. 20 δ_{P} 86.8). $\text{Pr}^{i}_{2}\text{P}(\text{O})\text{CH}_{2}\text{CN}$ distilled at 121.5 – 122.5 °C/0.30 mmHg (13.8 g, 80 %). The product crystallized upon standing, m.p. 58-61 °C. It is strongly hygrosopic and satisfactory elemental analysis could not be obtained. However, ¹H NMR showed no impurities other than water. NMR data: $\delta_{\rm P}$ 53.7. $CH_2{\rm CN}$: $\delta_{\rm H}$ 2.84, $^2J_{\rm PH}$ 13.5 Hz. CH_3 : Nonequivalent CH₃ groups, $\delta_{\rm H(A)}$ 1.33, $^3J_{\rm PH(A)}$ 16.0 Hz, $\delta_{\rm H(B)}$ 1.32, $^3J_{\rm PH(B)}$ 16.6 Hz, $\Delta_{\rm AB}$ 0.9 Hz, $^3J_{\rm HH}$ 7.2 Hz. CH: $\delta_{\rm H}$ 2.26, $^2J_{\rm PH}$ 8.8 Hz (the assignment was assisted by data in ${\rm CDCl}_3-{\rm CD}_3$

C₆D₆ mixtures where △_{AB} was larger). P,P-Diethylphosphinoacetonitrile (IIa). A mixture of Et₂P(O)CH₂CN (14.5 g, 0.10 mol) and Ph₂SiH₂ (18.4 g, 0.10 mol) was heated with stirring to 150 °C for 5 h. The reaction mixture was distilled in vacuo through a 15 cm Vigreux column to give Et₂PCH₂CN, b.p. 90-92 °C/13 mmHg (11.0 g, 85 %). No impurities were observable from its ¹H NMR impurities were observation from its ²H NMK spectrum. NMR data: $\delta_{\rm P} = 24.4$. $CH_2{\rm CN}$: $\delta_{\rm H} 2.42$, $^2J_{\rm PH} 5.1$ Hz. CH_3 : $\delta_{\rm H} ca$. 1.11, $^3J_{\rm PH}$ ca. 16 Hz, $^3J_{\rm HH}$ ca. 7 Hz. $CH_2{\rm CH}_3$: $\delta_{\rm H}$ ca. 1.6, $^2J_{\rm PH} < 2$ Hz (second order spectrum). P.P.-Diisopropylphosphinoacetonitii (IIb).

A mixture of Pri₂P(O)CH₂CN (17.3 g, 0.10 mol) and Ph₂SiH₂ (20.2 g, 0.11 mol) was heated with stirring to 200 °C for 3 h. Distillation in vacuo through a 15 cm Vigreux column gave $Pr^{i}_{2}PCH_{2}CN$, b.p. 92-92.5 °C/5.0 mmHg gave Fr₂FCH₂CN, b.p. 92-92.5 °C/5.0 mmHg (11.8 g, 75 %). No impurities were observable from its ¹H NMR spectrum. NMR data: $\delta_{\rm P}$ 0.7. CH₂CN: $\delta_{\rm H}$ 2.36, ²J_{PH} 4.5 Hz. CH₃: Nonequivalent CH₃ groups, $\delta_{\rm H(A)}$ 1.17, ³J_{PH(A)} 15.2 Hz, $\delta_{\rm H(B)}$ 1.14, ³J_{PH(B)} 11.7 Hz, ³J_{HH} 7.0 Hz, $\Delta_{\rm AB}$ 3.0 Hz. CH: $\delta_{\rm H}$ 1.96, ²J_{PH} 2.2Hz.

P,P-Di-t-butylphosphinoacetonitrile (IIc). A mixture of Bu¹₂P(O)CH₂CN (4.02 g, 0.02 mol) and Ph₂SiH₂ (3.7 g, 0.02 mol) was heated with stirring to 240 °C for 15 h. Distillation in vacuo through a 10 cm Vigreux column gave Bu^t₂PCH₂CN, b.p.118-119°C/5.8 mmHg, m.p. 6-8°C (2.8 g, 75%). No impurities were observable from its ¹H NMR spectrum. NMR data: δ_P 27.0. CH₂CN: δ_H 2.36, ${}^2J_{PH}$

2.5 Hz. CH_3 : $\delta_{\rm H}$ 1.23, ${}^3J_{\rm PH}$ 11.7 Hz. P,P-Diphenylphosphinoacetonitrile (IId). A mixture of Ph₂P(O)CH₂CN (24.1 g, 0.10 mol) and Ph₂SiH₂ (18.4 g, 0.10 mol) was heated with stirring to 190 °C for 6 h. Destillation in vacuo through a Claisen head gave Ph₂PCH₂-CN, b.p. 146-147 °C/0.35 mmHg (18.0 g, 80 %). No impurities were observable from its ¹H NMR spectrum. NMR data: δ_P -17.8. CH₂CN: δ_H 2.89, ²J_{PH} 4.4 Hz. Ph: δ_H 7.4 (m).

(Cyanomethyl)triethylphosphonium bromide. A mixture of Et_2PCH_2CN (0.26 g, 2×10^{-3} mol) and EtBr (0.6 g, 6×10^{-3} mol) in acetone (2 ml) was heated in an ampule to 100 °C

for 24 h. The residue after evaporation was recrystallized from 2-propanol to give Et_s-P+CH₂CN Br⁻ (0.38 g, 80 %), m.p. 228-230 °C. (Found: C 40.18; H 7.18; N 5.68; Br 33.25. Calc. for C₈H₁₇BrNP: C 40.35; H 7.20; N 5.88; Eac. 107 C_8H_{17} DrN?: C 40.50; H 7.20; N 5.88; Br 33.56). IR (KBr): $\nu_{\rm CN}$ 2252 cm⁻¹. NMR ((CD₃)₂SO): $\delta_{\rm P}$ 41.1 CH₂CN: $\delta_{\rm H}$ 4.51. $^2J_{\rm PH}$ 15.3 Hz. CH₃: $\delta_{\rm H}$ 1.35, $^3J_{\rm PH}$ 19.7 Hz, $^3J_{\rm HH}$ 7.6 Hz. CH₂CH₃: $\delta_{\rm H}$ 2.54, $^2J_{\rm PH}$ 13.5 Hz. The compound prepared from Et₃P and BrCH CN bad identical

BrCH2CN had identical m.p., and NMR

spectra.

Kinetic measurements. The conductivities were measured with a Radiometer type CDM 2 Conductivity Meter and a cell with platinized platinum electrodes. Acetone and EtI were purified through a column of Al_2O_3 (Woelm W 200 basic) and had conductivities of 0.3-2 μ S. Solutions of Ph_2PCH_2CN (0.106 M) and EtI (0.192 M) in acetone were prepared, and 25 ml of each mixed in the conductivity cell at $35\pm~0.1$ °C. The conductivity was measured until less than 0.4 % of Ph₂PCH₂CN had reacted. The concentration of Ph₂EtP+CH₂CN I was calculated from the conductivity values by comparison with the conductivities of standard solutions of the phosphonium salt. Similar experiments were made with Ph₃P. The rate constants were calculated from eqn. (4) of Henderson and Buckler. Found for Ph₂PCH₂CN: $k = 7.2 \pm 0.2 \times 10^{-6}$ 1 mol⁻¹ s⁻¹; for Ph₃P: $k = 5.8 \pm 0.\overline{2} \times 10^{-5}$ 1 mol⁻¹ s⁻¹. The value for Ph_3P was higher than that (3.78×10^{-5}) given by Henderson and Buckler ¹ probably because of residual water in our solvents.

(Cyanomethyl)diphenylethylphosphonium iodide. A mixture of Ph₂PCH₂CN (0.45 g, 2×10^{-3} mol) and EtI (1 ml, 12×10^{-3} mol) in acetone (5 ml) was refluxed for 4 h. After cooling, Ph₂EtP+CH₂CN I⁻ was filtered off and recrystallized from abs. ethanol. Yield 70 %, m.p. 179-179.5 °C. (Found: C 50.40; H 4.61; N 3.65; I 33.52. Calc. for $C_{16}H_{17}INP$: C 50.41;

H 4.50; N 3.67; I 33.29).

REFERENCES

- 1. Henderson, W. A., Jr. and Buckler, S. A. J. Amer. Chem. Soc. 82 (1960) 5794.
- 2. Staats, P. A. and Morgan, H. W. Inorg.
- Syn. 6 (1960) 84.
 3. Gillham, H. C., Sherr, A. E. and Klein, H. G. U. S. Pat. 3,736,349, (1973).
- 4. Kollar, J. U. S. Pat. 3,538,141 (1970) Zabusova, N. G., Razumov, A. I. and Tarzivolova, T. A. Tr. Kazansk. Khim.-Tekhnol. Inst. No. 33 (1964) 167; Chem. Abstr. 66 (1967) 10998h.
 6. Regitz, M. and Anschütz, W. Chem. Ber.
- *102* (1969) 2216.
- 7. Dahl, O. To be published.
- Fritzsche, H., Hasserodt, U. and Korte, F. Chem. Ber. 97 (1964) 1988.

- 9. Fritzsche, H., Hasserodt, U. and Korte, F. Chem. Ber. 98 (1965) 1681.
- 10. Kosolapoff, G. M. and Maier, L. Organophosphorus Compounds, Wiley Interscience, New York (1972), Vol. 1, p. 99. 11. Gallagher, M. J. Aust. J. Chem. 21 (1968)
- 1197.
- 12. Rao, C. N. R. Chemical Applications of Infrared Spectroscopy, Academic, New York 1963, p. 268.
- 13. Stevenson, G. W. and Williamson, D. J. Amer. Chem. Soc. 80 (1958) 5943.
- 14. Floyd, M. B. and Boozer, C. É. J. Amer.
- Chem. Soc. 85 (1963) 984.
 15. Ogata, Y. and Yamashita, M. J. Chem. Soc. Perkin Trans. 2 (1972) 730.
- 16. Zabusova, N. G. and Razumov, A. I. Tr. Kazansk. Khim.-Tekhnol. Inst. No 33 (1964) 161; Chem. Abstr. 65 (1966) 737e. 17. Pommer, H. and Stilz, W. Ger. Pat 1,116,653
- (1961); Chem. Abstr. 57 (1962) P2268a. 18. Fiszer, B. and Michalski, J. Rocz. Chem.
- 28 (1954) 185. 19. Christen, P. J. and van der Linde, L. M. Rec. Trav. Chim. Pays-Bas 78 (1959) 543.
 20. Noyce, D. S. and Virgilio, J. A. J. Org.
- Chem. 37 (1972) 2643.

Received February 5, 1975.