Raman Spectra of Molten Mixtures Containing Aluminium Fluoride. II. Dissociation of AlF₆⁻

ERLING RYTTER a
and SIGNE KJELSTRUP RATKJE b, *

a The University of Trondheim, Norwegian Institute of Technology, Division of Inorganic Chemistry, N-7034 Trondheim-NTH, Norway and
b The University of Trondheim, Department of Chemistry, NLIHT-Rosenberg, N-7000 Trondheim, Norway

Both ideal 1–4 and regular solution models 5 have been adapted to explain the thermodynamic data of the alkali fluoride-aluminium fluoride melts. In the sodium system Grjotheim 1 found that the dissociation reaction

\[\text{AlF}_6^- \leftrightarrow \text{AlF}_4^- + 2\text{F}^- \]

(1)

gave the best description of the cryolite peak in the phase diagram of NaF and AlF₆. The same result was found for the corresponding lithium system. 2,3 Holm 4 interpreted the total value of \(\Delta H_{\text{mix}} \) in the system NaF-AlF₆ as due to the dissociation of the cryolite anion into AlF₆ and F⁻ in the composition range 0 < \(X_{\text{AlF}_6} \) < 0.25. Dewing 5 found that NaF-NaAlF₆ mixtures may be described for all values of \(X_{\text{AlF}_6} \) as a regular solution the two ions F⁻ and AlF₆⁻. Deviations near the NaAlF₆ composition were explained by the formation of Al₃F₁₀⁻.

All these calculations, however, are based on model assumptions and are as such only indirect indications of melt species. In a previous investigation 6 we reported the ion AlF₆⁻ as the main complex in the system LiF-Li₃AlF₆. In order to test the existence of other species proposed in the cryolite melts, compositions in the system Li₃AlF₆-AlF₆ should be investigated. In this paper we report the results of a Raman spectroscopic investigation of the Li₃AlF₆-AlF₆ eutectic melt. After completion of the present work we became aware of a Raman investigation of the sodium system. 1,6

Results. The experiments were performed according to a procedure previously described. 6

The only change in the experimental design was the introduction of a cylindrical platinum liner in the Raman cell in order to increase the Raman intensity. The spectrum obtained at 730 °C for the molten Li₃AlF₆-AlF₆ eutectic mixture, LiF + 35.5 mol % AlF₆, is presented in Fig. 1. Two peaks at 545 ± 10 and 620 ± 10 cm⁻¹ were found by subtraction of the background and by resolution of the band complex into two approximate Gaussian curves. The

* To whom correspondence should be addressed.

Fig. 1. The Raman spectra of the molten Li₃AlF₆—AlF₆ (I) and LiF-Li₃AlF₆ (II) eutectic mixtures at 730 °C. The band widths were 20 cm⁻¹ (curve I) and 25 cm⁻¹ (curve II). Sensitivity: 1000 cps. Scan speed: 0.2 cm⁻¹/s. Period: 50 s.

Band positions were determined from six spectra. There were signs of additional bands at ~220 and ~350 cm⁻¹. For comparison, the spectrum of the LiF-Li₃AlF₆ eutectic mixture 4 also is given in Fig. 1. The ratio of the peak intensities \(I_{545}/I_{620} \) was calculated from the average of four spectra to be 1.0 ± 0.1. Uncertainties in melt compositions are included in this limit.

Discussion. The 620 cm⁻¹ band is assigned to the \(\nu_1 \) frequency of the AlF₆⁻ tetrahedron. The frequency agrees well with 630 ± 20 cm⁻¹ estimated in our previous publication. 6 The band at 545 ± 10 cm⁻¹ is attributed to the totally symmetric stretching frequency of AlF₆⁻. This result is within the uncertainty limits of our first value, 556 ± 5 cm⁻¹. In NaF-AlF₆ mixtures, 1,6 the corresponding frequencies were found to be 622 and 555 cm⁻¹.

Since no definite sign of species other than AlF₆⁻ and AlF₆⁻ was found, the dissociation (1) is used in a description of the melt mixtures in the composition range LiF-Li₃AlF₆. Thus the melt is considered as being composed of a cation mixture and a mixture of the anionic entities AlF₆⁻, AlF₄⁻, and F⁻. This represents a Temkin model, but not necessarily an ideal one.
The following expression then is valid for the stoichiometric dissociation constant \(K \) of reaction (1) in the system LiF-AlF₃:

\[
K = \frac{[(1+P) - X_{\text{AlF}}^{2-}] (2 + 4P)^3}{P[(1+P) - X_{\text{AlF}}^{2-}] (1 + 3P)^3}
\]

where \(P \) is the ratio between the concentrations of AlF\(^{2-}\) and AlF\(^4-\). The expression is derived by a procedure similar to that described for KCl-AlCl₃ melts.\(^{18,19}\) For pure cryolite, LiAlF₄, \(P \) is related to the dissociation degree \(\alpha_0 \) of AlF\(^{2-}\) through

\[
P = \frac{X_{\text{AlF}}^{2-}}{X_{\text{AlF}}^{2-}} = \frac{1 - 2\alpha_0}{\alpha_0}
\]

Combination of eqns (2) and (3) and introduction of \(X_{\text{AlF}}^{2-} = 1/4 \) yield

\[
K = 4\alpha_0/(1 + 2\alpha_0)(1 - \alpha_0)
\]

At a constant temperature, the relationship between \(P, \alpha_0 \) and \(X_{\text{AlF}}^{2-} \) is given by eqns. (2) and (4) provided the activity coefficient term is constant. This assumption is not as rigid as the ideal mixture approximation. The value \(\alpha_0 \) at a temperature \(T \) may be used as a frame of reference for the function \(P = P(X_{\text{AlF}}^{2-}) \).

According to Wolkenstein's bond polarization theory, the mean molecular polarization derivative is a bond property (see Chantry\(^{11}\)). It follows that the mol fraction ratio may be calculated from\(^{10,12}\)

\[
\frac{X_{\text{AlF}}^{2-}}{X_{\text{AlF}}^{2-}} = \frac{k}{P} = P = P
\]

with \(k = 1/1.9 \). The value \(k = 4/6 \) was used by Solomons et al.,\(^{13}\) but they did not take the difference in \(\nu \), frequencies between the two species into account. The Al–F bonds in the two species are assumed similar. Gilbert et al.\(^{14}\) found that the coefficient \(k \) should be between 1/2.0 and 1/2.1 in the NaF-AlF₃ system. By using the value \(k = 1/2.0 \) and inserting 1.0 for the intensity ratio \(I_{\text{AlF}}^{2-}/I_{\text{AlF}}^{2-} \) at \(X_{\text{AlF}}^{2-} = 0.355 \), the result \(P = 0.5 \) is obtained. This gives \(K = 3.4 \times 10^{-3} \) from eqn. (2) and \(\alpha_0 = 0.24 \) from eqn. (4) at 730 °C. This result is consistent with previous investigations of the LiF-LiAlF₄ eutectic mixture\(^{1,4} \) which gave no sign of AlF\(^{2-}\). By taking into consideration the uncertainty of the observed intensity ratio, the uncertainty of \(\alpha_0 \) is calculated to be \(\pm 0.06 \). It is a linear relationship between \(\alpha_0 \) and \(P \) at \(X_{\text{AlF}}^{2-} = 0.355 \) and therefore the upper and lower limits are equal.

The effect of changing the temperature from 730 °C to the melting temperature of lithium cryolite, 782 °C, may be estimated by using the value \(A\nu = 50.5 \) J/mol at 700 °C which Holm and Holm\(^{9} \) have calculated for the dissociation AlF\(^{2-}\) = AlF\(^{4-}\) + 3F\(^-\). Van't Hoff's equation then leads to an increase in \(\alpha_0 \) of about 10 % when the undercooled liquid is heated to the melting point.

The obtained value of \(\alpha_0 \) is in reasonable agreement with the thermodynamic values \(\alpha_0 = 0.35 \) and \(\alpha_0 = 0.40 \) reported by Malinovsky and Vrebenska\(^{1,4} \) and with \(\alpha_0 = 0.20 \) given by Jønsen.\(^2 \) The thermodynamic values refer to 782 °C. Good correspondence with thermodynamic results also are found in the recent Raman investigations by Gilbert et al.,\(^4 \) of NaF-AlF₃ melts. They found \(K = 3 \times 10^{-4} \) at 780 °C.

To conclude, the dissociation of AlF\(^{2-}\) in cryolite melts is found to follow the equilibrium reaction AlF\(^{2-}\) = AlF\(^{4-}\) + 3F\(^-\) with \(K = 3 \times 10^{-4} \) and \(\alpha_0 = 0.24 \pm 0.06 \) at 730 °C in the lithium system. These values are based on a Temkin model and a scattering efficiency (\(\nu_1 \)) of AlF\(^{2-}\) two times greater than of AlF\(^{4-}\).

Acknowledgement. The authors wish to thank Dr. K. Larsson for the use of a Cary 82 Raman spectrometer. The financial support of Elkm-Spigervorket A/S, Royal Norwegian Council for Scientific and Industrial Research, and the Norwegian Research Council for Science and the Humanities is gratefully acknowledged.

5. Dewing, E. Met. Trans. 3 (1972) 495.

Received May 27, 1975.