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trans-Dichlorobis(ethylenediamine)platinum-
(IV) tetrachlorocuprate(II) monohydrate, trans-
Pt[(en),Cl,][CuCl,].H,0, is monoclinic, P2/c with
a=1.788(6) A, b=17.369(7) A, ¢=15.080(20) A,
p=114.4(1)°, and Z =2. The structure has been
solved by Patterson and Fourier methods from
three dimensional X-ray date and refined by
the method of least squares to an E-value of
0.051. The refinement was based on 1359 inde-
pendent reflections. The coordination around
Pt is nearly octahedral with an average Pt —N
distance of 2.081(8) A; the Pt—Cl distance is
2.313(4) A. The [CuCl,]*" configuration is a
strongly distorted tetrahedron with Cu—Cl
distances of 2.239(5) and 2.276(4) A; the dihedral
angle is 35.7(2)°. The strong deformation may
in part be due to hydrogen bonding.

Complex ions of the type [CuCl,]"%~, n=3, 4,
and 5, have received much interest recently,'?
mainly because of the variety of coordination
polyhedra they exhibit. However, isolated
[CuCL,]" %~ complexes with n=6, the most
frequent coordination number in 3d-transition
metal complexes, have not been reported in the
literature.

In [Cr(NH,),][CuCl;] the uncommon CuCl3*"
ion is stabilised by the large [Cr(INH,),]*+
cation.! This suggests that a suitable cation,
2.e. with respect to size and charge, might
facilitate the existence of an isolated CuClg*~
complex. [Pt(en);]*+ was chosen as cation and
the reaction assumed to take place was

[Pt(en);]Cl, + CuCly—> [Pt(en);][CuCly]

* Author to whom correspondence is to be ad-
dressed.
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However, this attempt led to the formation of
trans-[Pt(en),CL,}[CuCl].H,0, exclusively. For
n=4, at least three distinct coordination poly-
hedra are known of which examples are given in
Table 1. The present compound contains
[CuCl,]*~ complexes of type 1, but a strong
distortion of the tetrahedron brings it close to

type 2.

EXPERIMENTAL

Chemistry. [Pt(en),;]C1,.3H,0: A modification
of Smirnoff’s method * was used to prepare this
compound. (Found: C 12.35; H 4.11; N 14.49;
Cale. for [Pt(C,H,N,);]C1,.3H,0: C 12.61; H 4.25;
N 14.71). trans-[Pt(en),Cl,][CuCl,].H,0: A mix-
ture of 0.3 5 [Pt(en)s]C1,.3H,0 in 1.5 ml water
was added dropwise to a solution of 2.0 g LiCl
and 0.2 g CuCl,.2H,0 in a mixture of 2 ml
ethanol and 3 ml 4 M hydrochloric acid. A
brown salt precipitated after a few seconds.
Recrystallization from hot conc. HCl gave
grass-green prismatic crystals. Yield 0.2 g.
(Found: C 7.57; H 2.89; N 8.79; CI 34.48. Calc.
for [Pt(C,H,N,),Cl,]J[CuCl,].H,0: C 7.88; H 2.98;
N 9.19; Cl 34.89). The density of the crystals
was determined by flotation in a mixture of
CCl, and CHBr,.

X-Ray technique. Lattice parameters and
space group were determined from Weissenberg
and precession photographs using Cu and Mo
radiation (A, =1.5418 A, 14,=0.7109 A).
Preliminary intensity data were collected in
the A0l plane from Weissenberg photographs
using the multiple film technique and visual
intensity estimation. Ni-filtered Cu radiation
was employed, and the crystal, which was
bounded by {100}, {001}, and {010}, had the
linear dimensions 0.11 x 0.10 x 0.30 mam3. Three
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Table 1.
Type Compound Coordination polyhedron Ref.
1 [(CH,) NH],[CuCl,] flattened tetrahedron 4
2 [(CeH{)C,H ,NH,(CH,)],{CuCl,] square plane ¢ 7
3 [(CeH)NH,],[CuCl,] elongated octahedron 6

% Room temperature modification.

dimensional intensity data were obtained by
means of a semi-automatic Supper diffrac-
tometer controlled by an RC4000 computer.
This computer was also used for the data
reduction. Graphite monochromatized MoKa
radiation was used and data were collected out
to sin §/A=0.7 A1, yielding 1570 independent
reflections. No correction was applied for ab-
sorption.

CRYSTAL DATA

Crystal system: monoclinic (b-axis unique).
Unit cell: a="17.788(6) A, b=17.369(7) A, c¢=
15.080(20) A, f=114.4(1)°, Z=2, dy,=2.54
glem?, d . =2.56 gfem?, uyox,=116.8 cn™,
Systematic absences: hO0l. I=2n+ 1.

Space group: P2/c (or Pc).

STRUCTURE DETERMINATION

A Patterson function based on the k0! film
data confirmed that the platinum and copper
atoms were in special positions. The position of
the three chlorine atoms could also be deter-
mined, whereas the lighter atoms were unde-
tectable both in Patterson and Fourier maps.

The R-value at this stage was 0.21, (R=
(SIF gl — K1 F o]}/ S1Fopel). This part of the
structure analysis constituted an undergraduate
course in X.ray crystallography.

The three dimensional data confirmed the
positions of the heavy atoms and the ethylene-
diamine molecule was easily found from a
Fourier map. The structure was refined by the
full matrix least squares program LINUS.® An
R-value of 0.065 based on all reflections was
obtained when anisotropic thermal parameters
were included. A difference Fourier map showed
the oxygen atom of the water molecule and to
some extent the hydrogen atoms. The criterion
F1s2< 30(Fp,s2) was then applied and reflec-
tions with k®+412< 8 were deleted due to the
diffractometer geometry. This reduced the
number of reflections to 1359 and they were
in the further refinement weighted by w=
1/[u(F),where u(F)=[0(F*)count+1.03F ol —
|Fopsl. Hydrogen atoms were inserted in fixed
calculated positions with constant B-values of
4.0. The scattering factors used for Pt, Cu, Cl,
N, C, and O were those given by Cromer and
Mann,!! and for hydrogen the scattering curve

Table 2. Atomic coordinates with standard deviations x 10* in parentheses. Calculated hydrogen

positions under the assumption of sp® hybridized atoms and N—H=1.00

A, C—H=1.05 A,

O0-H=0.95 A.

Atom x y z Atom x Y z

Pt 0.0000 0.0000 0.0000 H, 0.192 —-0.235 0.131
Cu 0.5000 0.2955(3) 0.2500 H, 0.327 —0.060 0.139
Cl, 0.2043(6) 0.2194(5) —0.0092(3) H, 0.104 —0.071 —0.140
Cl, 0.2715(6) 0.4966(7) 0.2301(3) H, —0.080 —0.196 —0.155
Cl, 0.3566(6) 0.0759(6) 0.3014(3) H; 0.396 —0.358 0.073
N, 0.2328(18)  —0.1453(17) 0.0930(9) . 0.413  —0.158 0.019
N, 0.0435(19) —0.1497(16) —0.1064(8) H, 0.092 —0.411 —0.045
C, 0.3209(23)  —0.2451(22) 0.0338(13) H, 0.232 —0.356 —0.105
C, 0.1704(24)  —0.3067(21)  —0.0590(12) H, 0.095 —0.248 0.245
(0] 0.0000 —0.1717(33) 0.2500
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Table 3. Thermal parameters with standard deviations in parentheses, both x 10%. The u;; are
defined by exp [ — 2a%(u,,a**h2+ -+ -2u,, a*b*hk + +++)].

Atom Uy Usa Uas Uya Uys Ugg

Pt 287 (3) 162(16) 214(3) 0(5) 135(2) 23(5)
Cu 423(15) 241(19) 384(14) 0 216(12) 0
1, 445(21) 244(21) 535(23) 21(16) 300(19) —64(19)
al, 652(24) 338(21) 643(24) 105(30) 369(21) 81(27)
cl, 454(22) 341(22) 380(19) 16(16) 240(17) 38(15)
N, 451(76) 270(58) 357(64) 33(54) 195(60) 35(50)
N, 514(78) 293(55) 281(58) 10(54) 259(59) —23(58)
c, 345(82) 414(84) 506(93) 108(68) 208(76) 86(71)
C, 567(101) 309(74) 447(87) . 30(69) 355(82) —24(67)
0 652(140) 742(169) 1404(224) 0 570(152) 0

given by Stewart, Davidson and Simpson 12 was
used. A final R-value of 0.051 was obtained; no
attempt has been made to use the non-centro-
symmetric space group Pc. Atomic coordinates
are listed in Table 2 and anisotropic thermal
parameters in Table 3; a list of observed and
calculated structure factors is available on
request.

DISCUSSION

Chemistry. The compound trans-[Pt(en),Cl,]-
[CuCl,].H 0 is prepared according to the follow-
ing overall reaction scheme:

[Pt(en),]*+ + [CuCl ]* + 2H+ + 201~
[Pt(en)yCl ]2+ + [CuCl, ]2~ + enH, 2+

This is a rather unusual reaction because the
ion [Pt(en),]*+ is normally kinetically inert. The
formation of the ¢rans isomer suggests a mecha-
nism involving the planar [Pt(en),]*t ion as a
simple splitting off of one en molecule would
lead to the cis isomer. It is possible * that the
starting material [Pt(en);]Cl1.3H ;O contained
small amounts of [Pt(en);]Cl,; furthermore, it is
known 18 that chlorocomplexes of Cu(II) are
able to oxidize Pt(II) to Pt(IV). It is therefore
suggested that the dark brown salt isolated
first contains both Cu(I) and Cu(II); salts of this
type have been described by Mori.’* When this
salt is recrystallized from hydrochloric acid,
copper(I) is reoxidized to copper(II) by molec-
ular oxygen, and [Pt(en);]*+ is converted to
trans-[Pt(en),Clg]*+. It is presumed that Cu(I)
here acts as a catalyst. The details of this last
reaction are under further investigation.
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Fig. 1. Perspective drawing of trans-[Pt(en),-
Cl,]*t+ in trans-[Pt(en),Cl;][CuCl,].H,0. Thermal
ellipsoids enclose 50 9, probability (ORTEP
II).18

Structure. The platinum atom lies at a centre
of symmetry which causes the four nitrogen
atoms and the platinum to be exactly in a
plane and the chlorines to be in trans position
(Fig. 1). The two Pt— N distances (Table 4) are
equal within one standard deviation, and apart
from the N, —Pt—N, angle only slight devia-
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Table 4. Interatomic angles and distances in trans-[Pt(en),Cl;][CuCl,].H,O calculated with the
program ORFFE * including variance-covariance matrix and cell parameter errors. Standard

deviations in parentheses.?

Angle Degrees Distance A
N,—Pt-0l, 88.3(4) Pt—Cl, 2.313(4)
N,—Pt—Cl, 89.4(3) Pt—N, 2.074(12)
N.—Pt—N, 82.7(5) Pt—N, 2.087(11)
Pt—N,—C, 109.4(9) N,-Ci 1.522(20)
N,—C.—C, 109.3(1.2) c.—c, 1.478(23)
C,—C,—N, 108.9(1.2) C,—N, 1.497(20)
ComN,—Pt 109.0(9)

Cly— Cu—Cl’ 97.1(3) Cu—Cl, 2.239(5)
Clo— Cu—CL 89.4(2) Cu—CL. 2.976(4)
Cly— Cu—Cl, 92.4(2)

Cl,— Cu—CL,’ 154.1(2)

Dihedral angle (Cl;— Cu—Cly’) — (Cl;— Cu—Cly’) 35.7(2)°.

4 (‘) Symmetry operation &,y,}—z.

tions from pseudo octahedral symmetry are
observed. Several papers %! report Pt — Cl and
Pt—N distances and they all lie in the ranges
2.30—2.34 A and 2.01-2.10 A, respectively.
The structure of cis-[Pt(en),Cl,]Cl; (Ref. 22)
contains two independent Pt — Cl distances with
an average value of 2.306(5) A, and this value is
within one standard deviation of the distance
found in the present study. The average Pt — N
distance in the cis complex is 2.057(12) A as
compared with 2.081(8) A in the present com-
plex. The geometry of the ethylenediamine mol-
ecule, which is quite similar in the two isomers,
shows only slight deviations from the expected
configuration. The water molecule lies on the
two-fold axis through (,2)=(0,1/4) and from
the calculated hydrogen positions there seems
to be weak hydrogen bonding between the
water molecule and the ethylenediamine moiety,
¢f. Table 5.

The [CuCl,]*~ ion (Fig. 2a,b) is situated on
the two-fold axis through (z,z) =(1/2, 1/4). The
two independent Cu—Cl distances (Table 4)
seem to be significantly different, but they
agree with previously obtained values %7,
which normally lie in the range 2.20—2.34 A.
The Cl—Cu-—Cl angles, ¢f. Table 4, show a
large distortion of the [CuCl,]* ion from tetra-
hedral towards square planar configuration. The
deformation, expressed by the dihedral angle as
defined in Table 4, seems to be the most
pronounced so far reported. Table 6 shows a
selection of dihedral angles in distorted [CuCl]
ions along with the extreme cases, ¢.e. the
tetrahedral and the square planar configura-
tions.

Theoretical calculations 533 on the geo-
metry of the [CuCl]*~ ion predict the flattened
tetrahedron (approx. D,; symmetry) to be the
most stable coordination polyhedron. However,

Table 5. Probable hydrogen bonds in #rans-[Pt(en),Cl;][CuCl,]. H,0.%

A--B Distance (A) H---B Distance (4)
N,-+-Cly 3.35(1) H,---Cly’ 2.46
N,---Cl, 3.31(1) H,---Cl, 2.565
N,---Clg 3.50(1) H,.--Cl, 2.63

g:+0 3.13(2) H;---0 2.35

4 (") Symmetry operation &,y,3— 2.
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Fig. 2. Perspective drawing of [CuCl]*~ in #rans-[Pt(en),Cl,][CuCl,]. H;O. a. Viewed along the
twofold axis. b, Viewed perpendicular to the twofold axis. Thermal ellipsoids enclose 50 9, pro-

bability.

Fig. 3. Stereoscopic drawing of the b-projection in trans-[Pt(en),Cl,][CuCl].H,0. Hydrogen atoms
have been omitted for clarity.

Table 6. Dihedral angles in [CuCl]*" ions.

Compound Angle Ref.
(degrees)

Tetrahedron 90.0

[(CH,)C,H ,NH,(CH,)],[CuCl]* 80.0 7
Cs,CuCl, 73.6 25
[(CH,)N1,[CuCl,] 68.6 26
[(C:H NCH,),][CuCl,] 67.6 27
[(CeH4)CH,N(CH,),],[CuCl,] 66.6 28
[(CaH,);NH],{CuCl,] 63.7 4
[C1sH,,N;08],[CuCl,] 49.5 29
[Pt(en),Cl;][CuCl].H;O 35.7

Square plane 0.0

4 High temperature modification.
Acta Chem. Scand. A 29 (1975) No. 5
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in many of the structures solved so far, hydrogen
bonding seems to be of importance in deter-
mining the final geometry of the [CuCl,]*~ ion.
This is so also in the present compound where
several short distances which may correspond
to hydrogen bonds are found, ¢f. Table 5. The
interaction between [CuCl,]*~ and [Pt(en),Cl]2+
through hydrogen bonds might be taken as an
explanation of the stronger distortion towards
square planar configuration in the present com-
pound than in the other compounds in Table 6.
Further evidence for the importance of hydrogen
bonds in this type of compounds is given by the
complex [(CoH;)CH NH,(CH,)1,[CuCl,] which
exists in two modifications.” At room tempera-
ture the configuration of the [CuCl;]*" ion is a
square plane with substantial hydrogen bond-
ing, while the modification at 80 °C, t.e. at
higher thermal energy, contains [CuCl,]*~ as a
flattened tetrahedron. This seems to indicate
that with weak hydrogen bonding or completely
without, as is the case in Cs,CuCl, (Refs. 25, 33),
the most favourable geometry of the [CuCl,]*~
ion is in fact the moderately flattened tetra-
hedron as predicted by theory. It is therefore
likely that the strong deformation of the
[CuCl,]*~ ion in the present compound is due
only to packing forces and hydrogen bonding
and not to any inherent feature of the [CuClJ*~
ion itself.
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