Equilibrium Studies of Chromium(III) Complexes. I. The Complex Formation between Chromium(III) and Ethylenediamine in Aqueous Solution

PETER ANDERSEN, TORSTEN BERG and JENS JACOBSEN

Chemistry Department I, Inorganic Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

A new method is described whereby it is possible to establish equilibrium in aqueous solution between chromium(III) and different amine ligands (here ethylenediamine) within 3-5 days at room temperature as far as mononuclear complexes are concerned. The catalyst used is charcoal in combination with small amounts of chromium(II). A constant chromium(II) concentration is maintained by electrolytic reduction of chromium(III).

The hitherto unknown ion, \(\text{Cr} \, \text{en}_{2} \text{en}^{*} (\text{OH})^{2+} \) (en = ethylenediamine, en* = en as a monodentate ligand) is one of the equilibrium species, and it was isolated in solution.

The stability constants for the formation of \(\text{Cr} \, \text{en}_{2}^{3+} \) and \(\text{Cr} \, \text{en}_{2} \text{(enH)} (\text{H}_{2} \text{O})^{4+} \) from cis- \(\text{Cr} \, \text{en}_{2} (\text{H}_{2} \text{O})^{5+} \) were determined in 1 M chloride medium (NaCl) at 24 °C to be \(10^{8.42} \) and \(10^{9.8} \) M⁻¹, and the acid dissociation constants of \(\text{Cr} \, \text{en}_{2} (\text{enH})(\text{H}_{2} \text{O})^{5+} \) to be \(10^{-4.4} \) and \(10^{-4.8} \) M. The gross stability constant for \(\text{Cr} \, \text{en}_{2}^{3+} \) was found to be \(10^{19.3} \) M⁻³ and the ratio between cis- and trans- \(\text{Cr} \, \text{en}_{2} (\text{OH})_{2}^{2+} \) to be 5.

The equilibrated solutions contain several polymeric species among which are the ions [\(\text{en}_{2} \text{Cr}(\text{OH})_{2} \text{Cr} \, \text{en}_{2}^{3+} \)] and the new [\(\text{Cr} (\text{OH})_{2} \text{Cr} \, \text{en}_{2}]^{2+} \) which we isolated as various salts. The latter is the chromium analogue of Werner’s brown cobalt salt.

Attempts to study equilibria between chromium(III) and ligands in aqueous solution are complicated by the robustness of chromium(III) complexes. Therefore very little has been published in this field. Cobalt(III) complexes are in many ways analogous to those of chromium(III), and cobalt(III) likewise exhibits this robust behaviour. Bjerrum¹ showed, however, that it is possible to obtain equilibrium between cobalt(III) and ammonia if charcoal is used as a catalyst, a method which has later been used with other ligands, among them ethylenediamine.

It has been shown that charcoal reduces a little of the cobalt(III) to cobalt(II),⁴⁻⁵ Charcoal alone does not seem to have any catalytic effect on chromium(III) but if chromium(II) is added as well, the robustness is strongly reduced.⁶⁻⁷ This has been used in attempts to establish equilibrium between chromium(III) and ammonia by adding charcoal to concentrated ammonium chloride solutions containing different amounts of ammonia and all the chromium initially as chromium(II).⁸ Chromium(II) alone, like charcoal alone, does not establish equilibrium in such solutions. When both are present, charcoal, besides its catalytic effect on chromium(III), also catalyzes the oxidation of chromium(II) by the medium:

\[
\text{Cr(II)} + \text{H(I)} \xrightarrow{\text{C}} \text{Cr(III)} + \text{H(0)}
\]

This has the disadvantage that all chromium(II) may disappear before equilibrium is reached.

We present here a new method based on the same catalyst, i.e. chromium(II) and charcoal. By electrolytic reduction of chromium(III) to chromium(II) it is possible to maintain a constant concentration of chromium(II) because a steady state is reached when the amount of chromium(II) removed by reaction I equals the amount generated by electrolysis. In this way it is possible to choose a suitable catalyst...
concentration and keep it for days without any changes in the medium, except for a small H(I) consumption due to the continuous reduction.

We have applied the method to several chromium(III) complex equilibria. This paper concerns the equilibria between chromium(III) and ethylenediamine. Such equilibria have been studied before mainly by Woldbye, who determined the ratio between cis- and trans-[Cr en₂(OH)₄]⁺ (en=ethylenediamine) and measured the acid dissociation constants for the diqua and hydroxo aqua tetramine complexes.

EXPERIMENTAL

Procedure. A typical experiment was carried out as follows. A 100 ml flask was equipped with an inlet and outlet for nitrogen gas freed from oxygen by a washing-flask with Cr(II)-solution. At the bottom of the 100 ml flask were two mercury electrodes which could be filled with pure mercury from outside. One mercury electrode served as cathode in combination with a platinum anode separated from the cathode chamber (containing the chromium(III) solution) by the membrane of a Radiometer K 401 calomel electrode. The other mercury electrode, together with a saturated calomel electrode, registered the emf of the solution. Furthermore, the flask was provided with a thermometer, a valve for taking out samples without letting in oxygen, and a magnetic stirrer. The gas outlet ended under water or ethanol so that with a calibrated gas burette it was possible to measure the volume of hydrogen evolved.

The 50—100 ml solutions containing chromium(III) and ligands were placed in the cathode chamber. The compositions of such solutions are given in Fig. 1 and Table 1. In the anode chamber we used 2 M H₂SO₄, so that the current through the membrane was mainly established by hydrogen ions, in order to make the pH-change in the chromium solution as small as possible. After addition of charcoal and after removal of oxygen a voltage of about 10 V was applied, giving rise to a current of 5—15 mA. After 0.5—1 h the emf dropped to ca. —1.1 V and a distinct change in the solution had then taken place. The hydrogen evolved, now equivalent to the current, maintained a slight over-pressure in the flask, which was kept like this, i.e. with [Cr(II)]/[Cr(III)]~ 0.01, for 3—5 days. At this time equilibrium was reached and the current was switched off. The solution was analyzed when the small amount of chromium(II) had been oxidized to chromium(III) by the medium. The robustness of chromium(III) facilitated the further investigations of such solutions.

All the experiments were carried out at (24 ± 1) °C. The amount of charcoal and the current could be varied within wide limits, but the use of 1—2 g of charcoal per 1 and the above-mentioned conditions were found to produce the best catalytic effect.

Analysis of the medium and of the distribution of chromium(III) complexes in the equilibrium solutions. The solutions were analyzed for the total content of chloride, nitrogen (Kjeldahl) and chromium (atomic absorption spectrophotometry) before and after equilibration; the pH of the solutions was measured with a glass electrode and the amount of basic components was determined by titration with 0.1 M hydrochloric acid. The amounts of different chromium(III) species were determined by atomic absorption spectrophotometry after separation by cation-exchange chromatography on columns of Sephadex SP-C-25. No significant changes in the medium were observed. Initial difficulties with some solutions losing chromium during the reaction were overcome by thorough rinsing of the equipment. The most important results of these analyses are given in Fig. 1 and in Tables 1 and 2.

Table 1. The composition of the solutions having [Cr³⁺] = 1.0 M (NaCl). The determination of the concentrations of free enH₂⁺⁺, enH⁺, and en are based on a total nitrogen analysis (Kjeldahl), a correction for coordinated en, on our determination of the acid dissociation constants of enH₂⁺⁺ (Table 3), pHₜₐₓ, and on a determination of basic components by titration with 0.1 M HCl. "tris" and "bis" refer to [Cr en₂Cl₂]H₂O and trans-[Cr enCl₂]Cl.H₂O, respectively.

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total conc. of N (M)</td>
<td>1.05</td>
<td>1.17</td>
<td>1.10</td>
<td>1.03</td>
<td>1.13</td>
<td>1.02</td>
<td>1.04</td>
<td>1.02</td>
<td>2.88</td>
<td>2.92</td>
</tr>
<tr>
<td>[enH₂⁺⁺] (mM)</td>
<td>44</td>
<td>16</td>
<td>11</td>
<td>10.3</td>
<td>1.13</td>
<td>1.02</td>
<td>1.04</td>
<td>1.02</td>
<td>2.88</td>
<td>2.92</td>
</tr>
<tr>
<td>[enH⁺] (mM)</td>
<td>455</td>
<td>517</td>
<td>476</td>
<td>367</td>
<td>404</td>
<td>353</td>
<td>355</td>
<td>348</td>
<td>461</td>
<td>460</td>
</tr>
<tr>
<td>[en] (mM)</td>
<td>10.9</td>
<td>36.6</td>
<td>47.6</td>
<td>120</td>
<td>143</td>
<td>141</td>
<td>148</td>
<td>145</td>
<td>964</td>
<td>983</td>
</tr>
<tr>
<td>C₀Cl (mM)</td>
<td>10.65</td>
<td>15.76</td>
<td>10.25</td>
<td>13.7</td>
<td>9.82</td>
<td>13.30</td>
<td>11.45</td>
<td>13.7</td>
<td>6.2</td>
<td>15.9</td>
</tr>
<tr>
<td>Initial Cr(III)-comp.</td>
<td>tris</td>
</tr>
</tbody>
</table>

Acta Chem. Scand. A 29 (1975) No. 4
Table 2. The content, in mol.% of, of the mononuclear complexes relative to the total chromium(III) content. CrN₃O₄ refers to the sum of cis- and trans-Cr en₁(OH)₃⁺ and cis- and trans-Cr en₂(OH)(H₂O)⁺⁺; CrN₃O is the sum of Cr en₃en⁺(OH)⁺⁺ and Cr en₃(enH)(OH)⁺⁺. The hydrolysis constants for reactions II and III are given at the bottom of the table. • denote analyses repeated after one year.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrN₃O₄</td>
<td>58</td>
<td>79</td>
<td>87(84)</td>
<td>93</td>
<td>92</td>
<td>93</td>
<td>93</td>
<td>95</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>% cis-Cr en₁(OH)₃⁺</td>
<td>46.0</td>
<td>64.7</td>
<td>71.7</td>
<td>77.5</td>
<td>76.7</td>
<td>77.5</td>
<td>77.5</td>
<td>79.2</td>
<td>83.3</td>
<td>81.7</td>
</tr>
<tr>
<td>% CrN₃O</td>
<td>4.0</td>
<td>2.8</td>
<td>3.0(3.1)</td>
<td>1.83</td>
<td>2.8</td>
<td>2.1</td>
<td>3.1</td>
<td>1.76</td>
<td>1.06</td>
<td>1.5</td>
</tr>
<tr>
<td>% Cr en₃en⁺(OH)⁺⁺</td>
<td>1.42</td>
<td>1.73</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
<td>2.08</td>
</tr>
<tr>
<td>% Cr en₃⁺⁺</td>
<td>8.8</td>
<td>5.9</td>
<td>3.1(3.0)</td>
<td>0.99</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>K₅₁₁(cis) (M)</td>
<td>100</td>
<td>80</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>K₅₁₁(trans) (M)</td>
<td>14.8</td>
<td>19.3</td>
<td>16.5</td>
<td>17.4</td>
<td>12.5</td>
<td>14.5</td>
<td>9.8</td>
<td>17.3</td>
<td>36.9</td>
<td>25.6</td>
</tr>
</tbody>
</table>

a Average 83. b Average 18.5.

The separations on cation-exchange columns of Sephadex SP-C-25 are described in the following in more detail. The separations were made in acid as well as in basic solution on columns 1.2 cm in diameter and 5 cm long, protected from light when necessary. During the separation solutions were cooled in ice to prevent further reaction and separations were carried out as fast as possible (1-1 h).

For the acid separation 5 ml of the equilibrium solution (C₀ = 0.01-0.02 M) were diluted with water (0°C) to 100 ml and acidified with hydrochloric acid to pH ± 3. This solution was applied to the column with 0.5-1 atm overpressure and eluted with sodium chloride solutions of concentrations increasing from 0.2 to 2.0 M (pH ± 3). This divided the chromium mixture into several bands of cations with increasing charge, at least as regards mononuclear complexes. The first contained cis- and trans-Cr en₁(H₂O)⁺⁺ and Cr en₁⁺⁺, the second Cr en₁(enH)(H₂O)⁺⁺ (see later) and en₁ Cr(OH)₃⁺⁺ Cr en₁⁺⁺. In the following 4-5 violet bands it was not possible to identify any mononuclear complexes. These bands are therefore assumed to contain polynuclear complexes exclusively.

For the basic separation 5 ml of the equilibrium solution were diluted with water (0°C) to 75 ml. After application to the column it was eluted with an ammonium chloride-ammonia buffer with [NH₃] = 0.1 M and [NH₄⁺] increasing from 0.15 to 2.0 M. This divided the mixture into the following bands of mononuclear complexes with increasing charge: A first band containing cis- and trans-Cr en₁(OH)⁺⁺, a second containing Cr en₁en⁺(OH)⁺⁺ (see later), and a third one containing Cr en₁⁺⁺. At the bottom of this band was a band of en₁ Cr(OH)₃Cr en₁⁺⁺ mixed with another unidentified polynuclear complex. The subsequent violet bands (up to 4) contained polynuclear species. In this basic separation a few per cent of the chromium remained on the column, even after elution with 2 M NH₄Cl.

From these two methods of separation and a combination of them it was possible, by chromium atomic absorption spectrophotometry, to determine the amounts of most of the different chromium species in the equilibrated solutions.

Identifications of the chromium(III) complexes. Several methods were used to identify the chromium species and to verify that the separate bands did not contain significant amounts of undetected species. Visible spectrophotometry and analyses of the molar ratio between chromium and nitrogen after removal of nitrogen not bound to chromium were performed directly on the eluates. It was possible to obtain eluates relatively concentrated with respect to chromium by applying a less concentrated eluate to a new short column after this less concentrated eluate had been diluted further 5-10 times. By eluting this short column with a concentrated (2-4 M) electrolyte we obtained eluates with [Cr(III)] ≥ 0.1-0.2 M. These eluates were very suitable for precipitation of salts and in this way we isolated, among others, salts of Cr en₃⁺⁺ and some of the polynuclear complexes (see later) which could then be further analyzed.

The eluates with high chromium concentrations were also suitable for ESR spectroscopy. Such eluates were diluted ×2 with glycerol and cooled to -130°C within 1-2 min, after which the ESR spectrum of the frozen glass was taken. Such spectra appeared to be good fingerprints which could be compared with those of known chromium(III) complexes, and they also served as a convenient means to determine the ratio between trans- and cis-Cr en₁(H₂O)⁺⁺ (see Fig. 3).

Other properties, in addition to the methods mentioned above, contributed to the identification of the complexes, among them the acid-
Table 3. Relevant acid dissociation constants determined by glass electrode measurements. pK_{Spen} for Cr en$_4$(enH)(H$_2$O)$^{4+}$ was determined on the basis of elution rates (see Fig. 5).

<table>
<thead>
<tr>
<th>Acid (abbr.)</th>
<th>pK_{S1}</th>
<th>pK_{S2}</th>
<th>Medium</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>enH$_2$$^{3+}$</td>
<td>7.52</td>
<td>10.16</td>
<td>1 M Cl$^-$ (NaCl)</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td>7.49</td>
<td>10.17</td>
<td>1 M KNO$_3$</td>
<td>Poulsen & Bjerrum</td>
</tr>
<tr>
<td></td>
<td>7.44</td>
<td>10.06</td>
<td>1 M KCl</td>
<td>Pecsk & Bjerrum</td>
</tr>
<tr>
<td>Cr en$_4$(enH)(H$_2$O)$^{4+}$ (pen)</td>
<td>4.4</td>
<td>8.8</td>
<td>1 M NaCl</td>
<td>This work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.25 M NH$_4$Cl</td>
<td>This work</td>
</tr>
<tr>
<td>cis-Cr en$_4$(H$_2$O)$_2$$^{2+}$ (cis)</td>
<td>4.80</td>
<td>7.17</td>
<td>1 M NaNO$_3$</td>
<td>Woldbye</td>
</tr>
<tr>
<td>trans-Cr en$_4$(H$_2$O)$_2$$^{2+}$ (trans)</td>
<td>4.08</td>
<td>7.49</td>
<td>1 M NaNO$_3$</td>
<td>Woldbye</td>
</tr>
</tbody>
</table>

Thus $[\text{Cr(II)}]_0 = \frac{RTI}{FV_{\text{sol}}(\partial E/\partial t)_0} = \frac{0.0158}{V_{\text{sol}} \cdot (\partial E/\partial t)_0}$ at 24 °C, where I is in mA, V_{sol} in ml and $(\partial E/\partial t)_0$ in mV/min.

We have several reasons to believe that all the current is used for the reduction of chromium(III) to chromium(II) namely the good agreement between the two methods, and the

Fig. 1. The content, in mol per cent, of Cr en$_4$$^{4+}$ (CrN$_4$), Cr en$_4$en$^+$ (OH)$_2$$^{4+}$ + Cr en$_4$enH(OH)$_2$$^{4+}$ (CrN$_4$O), and Cr en$_4$ (OH)$_2$$^{4+}$ (CrN$_4$O$_2$) as a function of log C_{en} and log C_{enHCl}. $C_{\text{Cr}} = 0.05$ M and $C_{\text{enHCl}} = 4$ M. The distance AB is set to 2.6 log units, i.e. the difference between the acid dissociation constants pK_{SpenHCl} and pK_{SpenHCl} measured in the neighborhood of the point C referring to a solution of 4 M ethylenediamine hydrochloride. [Cr en$_4$]Cl$_2$3H$_2$O and trans-[Cr en$_4$Cl$_2$]Cl.H$_2$O (O) were used as starting materials.

Acta Chem. Scand. A 29 (1975) No. 4
fact that the hydrogen evolution, when starting with [Cr(II)] = 0, increases slowly until the steady state is reached, whereas no hydrogen is evolved when there is no charcoal present. Finally, addition of known amounts of chromium(II) sulfate confirmed the validity of both methods.

Chemicals and apparatus. All chemicals used were reagent grade or analyzed by us. [Cr en]Cl3·3H2O,11 trans-[Cr en3Cl2](H2O)12 cis-[Cr en3(H2O)Br3,13 and trans-[Cr en4(OH)(H2O)]Br4. H2O13 were prepared according to or analogously to the reference methods and were analyzed for Cr, N, and halogen. All analyses agreed within 1–2% (relative) with the given formulae. The charcoal used was a Norit W product.

Visible spectra were taken on a Cary 14 or a Bausch and Lomb Spectronic 505 recording spectrophotometer, and ESR spectra on a Jeol JES-ME-1X. A Perkin-Elmer 403 Atomic Absorption Spectrophotometer was used for chromium analysis. All emf and pH measurements were performed with a Radiometer PHM 52, the C 202 C glass electrodes used being tested in the relevant media according to Bjerrum.1

RESULTS

Equilibria studied. We have studied the following hydrolysis equilibria:

\[
\begin{align*}
\text{Cr en}^{3+} + \text{en} + 2 \text{H}_2\text{O} & \rightleftharpoons \text{Cr en}_2\text{OH}^{2+} + 2 \text{enH}^+ \\
\text{Cr en}_2\text{en}^*\text{OH}^{2+} + \text{H}_2\text{O} & \rightleftharpoons \text{Cr en}_2\text{OH}^{3+} + \text{enH}^+
\end{align*}
\]

(II) (III)

and in addition to these the cis-trans equilibrium:

\[
\text{trans-Cr en}_3\text{OH}^{3+} \rightleftharpoons \text{cis-Cr en}_3\text{OH}^{4+}
\]

These are equilibria between well known species with the exception of Cr en*OH2+, where en* denotes en binding as a monodentate ligand. A more detailed description of the properties of this complex, which is able to take up two protons, is given later in this section.

Fig. 1 gives the results of equilibration in 4 M ethylenediamine hydrochloride. In this medium the predominant complexes are the three mononuclear ones shown. No hydrolysis constants are given as the medium is far from constant, especially at high [enH2+] and high [en]. The ratio between cis- and trans-Cr en4(OH)4+ was found to be ca. 10 by ESR measurements (see later).

Equilibrium was also achieved without catalysis in solutions with the same initial composition as those in Fig. 1 with \(C_{\text{en}} = 0.3 \). Fig. 2 shows these catalyzed and uncatalyzed equilibrations and gives an impression of the increase of rate due to the catalyst. It is seen that the same final composition is reached independent of the choice of initial chromium compound and of whether the catalyst is used or not.
the ESR spectra enabled us to detect even small amounts of trans in cis, as shown in Fig. 3. The content of trans in CrN₃O₂ was measured to be between 15 and 19% in the series, corresponding to

\[
q_8 = \frac{[\text{cis-Cr en}_4(\text{OH})_2^+]}{[\text{trans-Cr en}_4(\text{OH})_2^+]} = 5
\]

in good agreement with Woldbye’s result.*

We determined the acid dissociation constants of enH₄⁺ and of Cr en₄(enH)(H₂O)₄⁺ in media similar to those used in exp. 1—10. The results are given in Table 3 together with relevant constants determined by other workers.

With \(q_8 = 5\) and with the aid of Table 3 it is possible to calculate the equilibrium amounts of Cr en₄(enH)(OH)₃⁺ and of Cr en₄en⁺(OH)₃⁺ comprising the CrN₃O₂-eluates, as well as the amounts of cis- and trans-Cr en₄(OH)H₂O⁺⁺ and cis- and trans-Cr en₄(0H)₂⁺⁺ comprising the CrN₃O₂-eluates. This is done in Table 2.

From the analytical results in Tables 1 and 2 it is now possible to calculate the hydrolysis constants for reactions II and III, that is

\[
K_{\text{hal/cis}} = \frac{[\text{cis-Cr en}_4(\text{OH})_2^+][\text{enH}^+]}{[\text{Cr en}_4^2^+][\text{en}]}
\]

and the analogous \(K_{\text{hal/trans}}\) and

\[
K_{\text{hal/cis}} = \frac{[\text{cis-Cr en}_4(\text{OH})_2^+][\text{enH}^+]^2}{[\text{Cr en}_4^2^+][\text{en}]}
\]

and the analogous \(K_{\text{hal/trans}}\).

These constants for the exp. 1—10 are given in Table 2.

The 3rd consecutive stability constant, \(K_3\), for the reaction Cr en₄(H₂O)₄⁺⁺ + en⁺Cr en₄H₂O⁺⁺ + 2H₂O is derived from Tables 2 and 3:

\[
K_{\text{hal/cis}} = \frac{[\text{Cr en}_4^2^+]}{[\text{cis-Cr en}_4(\text{H}_2\text{O})_2^+][\text{en}]}
\]

\[
K_{\text{hel/trans}} = K_{\text{hel/cis}}
\]

giving \(K_{\text{cis}} = 10^{4.43} \text{ M}^{-1}\) and analogously \(K_{\text{strans}} = 10^{3.55} \text{ M}^{-1}\), \(K_3^*\) for the reaction

\[
\text{Cr en}_4(\text{H}_2\text{O})_2^+ + \text{enH}^+ + \text{Cr en}_4(\text{enH})(\text{H}_2\text{O})^+^+ + \text{H}_2\text{O}
\]

is also derived from Tables 2 and 3:

\[
K'_{\text{hal/cis}} = K'_{\text{hal/cis}}
\]

Acta Chem. Scand. A 29 (1975) No. 4
Fig. 4. The electrode potential, measured between a mercury electrode and a saturated calomel electrode, for a typical experiment as a function of time, and its first derivative.

giving \(K'_{\text{scis}} = 10^{9.9} \) M\(^{-1}\) and analogously \(K'_{\text{trans}} = 10^{1.1} \) M\(^{-1}\).

The gross stability constant from emf-measurements. During the equilibration period the electrode potential, \(E \), between a mercury electrode and a saturated calomel electrode was followed continuously. Typical behaviour is shown in Fig. 4. The solution was at the final state of equilibration, and at –7 and –5 min a pure mercury surface was established by addition of new mercury to the electrode. \(E \) in the steady state, \(E_0 \), was measured as the lower points at –7 and –5 min, and \([\text{Cr(II)}]\) at \(t=0 \) was calculated from \((\partial E/\partial t)_0 = 10 \) mV/min (see exp. section) to be 0.35 mM. Measurement of the volume of hydrogen evolved between \(t=0 \) and \(t=10 \) min (0.42 ml) gave \([\text{Cr(II)}] = 0.34 \) mM. Table 4 shows the measurements on solutions 1–3 in their final state of equilibration. From these data one can estimate the stability constant \(\beta_{\text{scis}} \) for the reaction \(\text{Cr(H}_2\text{O)}_{\text{aq}}^{3+} + 2\text{en}=\text{cis-Cr en}_4(\text{H}_2\text{O)}_{\text{aq}}^{3+} + 4\text{H}_2\text{O}:\)

\[
\log \beta_{\text{scis}} = \log \beta_{\text{II}}^3 + pK_{\text{S cis}} + pK_{\text{S cis}} - 2pK_{\text{S en H}} - (E_0 + 652)/59 + \frac{[\text{cis-Cr en}_4(\text{OH})_{\text{aq}}^{3+}][\text{en H}^+]^2}{[\text{en}][\text{Cr(II)}]} \]

where \(\beta_{\text{II}}^3 \) is the gross stability constant for the uptake of 2 en by Cr\(^{3+}\). \(\log \beta_{\text{II}}^3 \) has been determined to be 9.19 in 1 M KCl\(^+\) and nearly all the Cr(II) will be present as Cr\(\text{en}_4^{3+} \) in exp. 1–10. “652” is the sum of the standard potentials of the Cr\(^{3+} - \text{Cr}^{2+}\) couple and of the saturated calomel electrode (410 mV \(^{18}\) and 242 mV, respectively). The \(pK_3 \) values are given in Table 3. Table 4 gives the values of \(\log \beta_{\text{scis}} \) as found from the emf-measurements.

The gross stability constant for Cr\(^{3+}\) binding 3 en is then given by \(\beta_3 = \beta_{\text{scis}} K_{\text{scis}} = 10^{14.6} \) M\(^{-3}\).

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>(-E_0) (mV)</th>
<th>([\text{Cr(II)}]) (mM)</th>
<th>(\log \beta_{\text{scis}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1133</td>
<td>0.39</td>
<td>13.32</td>
</tr>
<tr>
<td>1</td>
<td>1139</td>
<td>0.91</td>
<td>13.06</td>
</tr>
<tr>
<td>1</td>
<td>1187</td>
<td>1.32</td>
<td>13.55</td>
</tr>
<tr>
<td>1</td>
<td>1139</td>
<td>0.35</td>
<td>13.47</td>
</tr>
<tr>
<td>1</td>
<td>1140</td>
<td>0.34</td>
<td>13.50</td>
</tr>
<tr>
<td>2</td>
<td>1128</td>
<td>0.35</td>
<td>12.67</td>
</tr>
<tr>
<td>2</td>
<td>1145</td>
<td>0.47</td>
<td>12.83</td>
</tr>
<tr>
<td>2</td>
<td>1160</td>
<td>0.80</td>
<td>12.85</td>
</tr>
<tr>
<td>2</td>
<td>1134</td>
<td>0.50</td>
<td>12.61</td>
</tr>
<tr>
<td>2</td>
<td>1160</td>
<td>0.55</td>
<td>13.01</td>
</tr>
<tr>
<td>2</td>
<td>1135</td>
<td>0.68</td>
<td>12.50</td>
</tr>
<tr>
<td>2</td>
<td>1150</td>
<td>0.69</td>
<td>12.74</td>
</tr>
<tr>
<td>3</td>
<td>1166</td>
<td>0.31</td>
<td>12.92</td>
</tr>
<tr>
<td>3</td>
<td>1175</td>
<td>0.37</td>
<td>12.99</td>
</tr>
<tr>
<td>3</td>
<td>1142</td>
<td>0.150</td>
<td>12.83</td>
</tr>
<tr>
<td>3</td>
<td>1120</td>
<td>0.025</td>
<td>13.23</td>
</tr>
</tbody>
</table>

Average of exp. Nos. 1–3: 13.04

Acta Chem. Scand. A 29 (1975) No. 4
Fig. 5. The elution rate on Sephadex SP-C-25,
V_{el}, of Cr en$_2$(enH)(OH)$_2$H$_2$O$^{3+}$ + Cr en$_2$en$^*(OH)^2$ as a function of pH.
The eluting agent was 0.25 M NH$_4$Cl with varying
concentrations of NH$_3$. pH was measured
with a glass electrode (tested in this same
solution according to Bjerrum) before (O) and
after (□) elution.

The Cr en$_2$(enH)(H$_2$O)$^{4+}$ ion and its de-
protonated forms. This ion, believed to be an
intermediate in the acid hydrolysis of Cr en$_2$$^{3+}$ and recently found as such in this laboratory, is, in its two basic forms, among the mononuclear complexes present in the equilibrium solutions dealt with above. As it has not been described in the literature so far, we shall give here a few details. The acid dissociation constants of the protonated ion are given in Table 3. Owing to the lower robustness in basic solution
pK$_S$s was determined from the elution rate
relative to that of Cr en$_2$$^{3+}$, using 0.25 M NH$_4$Cl
with varying concentrations of ammonia as
eluent (Fig. 5), because we found that robustness of many of the complex ions is significantly higher when bound to the resin. A similar magnitude of pK$_S$ for enH$^+$ bound to chromium(III) has been found for (NH$_3$)$_3$Cr(OH)$_2$(NH$_4$)$_2$enH$^{4+}$, namely 8.42 in 0.1 M KCl at
20 °C. The visible spectra of the ions are shown in
Fig. 6. The visible spectrum and the ESR
spectrum of Cr en$_2$(enH)(H$_2$O)$^{4+}$ are identical with those of the acid hydrolysis product of Cr en$_2$$^{3+}$. Attempts to isolate salts of the ions resulted only in an amorphous, hygroscopic powder, most of which changed within hours into Cr en$_2$$^{3+}$ salt. Thus, out of the two possible
isomers we believe that we are dealing mainly
with the one having enH$^+$ (en*), and H$_2$O (OH)
cis to each other.

Polynuclear complexes. It appears that the mononuclear complexes quoted in Table 2 only
form part of the total chromium(III) content. The ion-exchange separations showed at least
five other bands, presumably all consisting of polynuclear complexes. It has not yet been
possible to determine any equilibrium constants
involving polynuclear complexes owing to the
difficulties in separating and identifying them.
Similar investigations with ammonia as ligand
show that equilibrium is established much
more slowly, if at all, among the polynuclear
than for the mononuclear complexes.

While the visible spectra of the polynuclear
species isolated in solution by ion-exchange
chromatography only show small differences, the
ESR spectra of their frozen glasses have served
as a very useful means of identification and
recognition as they are often very different. The
content of polynuclear species increases with
increasing [Cr(III)] and increasing [H$^+$] and two
of them have been identified, viz. the diol,
en$_2$Cr(OH)$_2$Cr en$_2$$^{3+}$, which was isolated as the
iodide, and Cr$_2$(OH)$_2$Cr en$_3$$^{3+}$, the chromium
analogue of the tetranuclear cobalt(III) complex.

Fig. 6. The visible spectra of Cr en$_2$(enH)-(H$_2$O)$^{4+}$ (——) and Cr en$_2$(en*)(OH)$^{3+}$ (—) in
2 M LiCl. The former spectrum was measured
directly on a 2 M LiCl eluate of Cr en$_2$(enH)-(H$_2$O)$^{4+}$ from Sephadex SP-C-25, and the latter
after addition of 12 M NH$_3$ to give [NH$_4$] = 0.5
M. Both spectra were measured twice with an
time of 5 min, and no changes were observed.

Acta Chem. Scand. A 29 (1975) No. 4
Table 5. Comparison of stability constants for Cr(III), Co(III), and Ni(II) with en.

<table>
<thead>
<tr>
<th></th>
<th>log K_1</th>
<th>log K_2</th>
<th>log K_3</th>
<th>log β_2</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(III)</td>
<td>6.4</td>
<td>19.5</td>
<td>(\leq 6.2)</td>
<td>This work</td>
<td>Woldbye (^9)</td>
</tr>
<tr>
<td>Co(III)</td>
<td>13.3</td>
<td>48.7</td>
<td></td>
<td>Bjerrum & Rasmussen (^1)</td>
<td>Woldbye (^9)</td>
</tr>
<tr>
<td>Ni(II)</td>
<td>7.51</td>
<td>6.35</td>
<td>4.42</td>
<td>18.3</td>
<td>Poulsen & Bjerrum (^2)</td>
</tr>
</tbody>
</table>

often referred to as Werner's brown salt.\(^9\) We discovered this tetraneuclear ion through its hydrolysis products in concentrated perchloric acid, and isolated the nitrate and iodide.\(^9\) A more detailed report of our investigations of polynuclear chromium(III) complexes will be published later.\(^9\)

DISCUSSION

From the results obtained we conclude that equilibrium among the mononuclear chromium(III) ethylenediamine complexes is indeed achieved by this catalytic procedure. We emphasize, in support of this conclusion, that the necessary condition is fulfilled that no further change is observed after some time. The final distribution of mononuclear complexes is independent of the initial chromium(III) compounds used and no difference in distribution is observed if the catalyst is not used at all (Fig. 2). Table 2 shows in addition a repeated analysis of the solution from exp. 3 after a year without catalyst. The differences from the first analysis are within the experimental error. Finally, the law of mass action is well obeyed, permitting the determination of the stability constants described in the previous section. The mercury electrode used for emf-measurements seems to work satisfactorily. This has been confirmed by similar investigations with, among others, ammonia and EDTA as ligands.\(^1,10\) The high overvoltage of mercury towards hydrogen prevents the evolution of hydrogen in all these cases.

Fig. 2 illustrates the catalytic effect of Cr(II) and charcoal in 4 M ethylenediamine hydrochloride. Woldbye's investigation of the ethylenediamine system\(^*\) shows that in a solution very similar to exp. 6 – 8 (NO\(_3^-\) instead of Cl\(^-\)) equilibrium is not reached within 50 days starting with Cr en\(_2\)\(^{3+}\), whereas the present method requires only 3 – 5 days. The cis-trans equilibrium is established without catalysis within a few days according to Woldbye.\(^9\)

Table 5 compares the equilibrium constants resulting from this investigation with other relevant constants. Chromium(III) is intermediate in stability between nickel(II) and cobalt(III), lying nearer to nickel(II). This same behaviour is observed with ammonia or EDTA as ligand.\(^9\)

Our value of $K_a \left(\frac{1}{K_s} = \frac{1}{K_{stac}} + \frac{1}{K_{strac}} \right)$ agrees reasonably well with Woldbye's estimate \(^9\) of $K_s \leq 10^{4.8}$ (owing to a calculation error the reference quotes $K_s \leq 10^{4.6}$), which is based on the assumption that there is less than 0.5 % Cr en\(_2\)\(^{3+}\) in his solutions. We find, using $K_s = 10^{4.4}$, that there is 0.8 %.

If one considers the equilibria

$\text{cis-Cr en}_2(\text{OH})(\text{H}_2\text{O})\text{H}^{3+} + \text{en} = \text{Cr en}_2(\text{OH})(\text{OH})\text{H}^{3+} + \text{H}_2\text{O}$

and

$\text{cis-Cr en}_2(\text{OH})(\text{H}_2\text{O})\text{H}^{3+} + \text{enH}^+ = \text{Cr en}_2(\text{enH})(\text{OH})\text{H}^{3+} + \text{H}_2\text{O}$

with the stability constants K_s and K_{β}, respectively, then the stability ratio between en\(^*\) and enH\(^+\) is $K_s/K_{\beta} = K_{\text{Stac}}/K_{\text{Stac-H}} = 10^{4.4}$ (Table 3). Assuming this same ratio for en\(^*\) and enH\(^+\) binding to cis-Cr en\(_2\)(H\(_2\)O)\(_2\)\(^{3+}\), one finds the stability constant for the reaction

$\text{cis-Cr en}_2(\text{H}_2\text{O})\text{H}^{3+} + \text{en} = \text{Cr en}_2(\text{H}_2\text{O})\text{H}^{3+} + \text{H}_2\text{O}$

$K_s' = K_{\text{stac}}K_a/K_{\beta} = 10^{4.4}$ M\(^{-1}\), that is nearly the same magnitude as we find for chromium-

Acta Chem. Scand. A 29 (1975) No. 4
(III) and ammonia \(K_a = 10^{1.4} \) M\(^{-1}\). Also, for silver(I)\(^{21}\) and mercury(II)\(^{22}\) it has been found that the stability of the complexes with ammonia and with monodentate ethylenediamine is of the same magnitude.

As mentioned above the method has been applied to other chromium(III) systems and we have, in this way, established equilibrium with, among others, ammonia, EDTA and 1,2-propanediame.\(^{10}\) However, the method seems to fail with glycine and non-amine ligands such as oxalate and thiocyanate, where we have so far been unable to build up a steady state with constant chromium(II) concentration, and equilibrium has not been obtained in these cases.

Acknowledgements. The authors are grateful to J. Bjerrum and C. E. Schäffer for valuable discussions and suggestions and to K. Jørgensen for her help in the analytical work.

REFERENCES

10. Andersen, P., Berg, T. and Jacobsen, J. *To be published.*

Received October 24, 1974.