The Mixed Complexes of Mercury(II) with Hydroxide and Iodide

INGRID AHLBERG

Division of Physical Chemistry I, Chemical Center, University of Lund, P.O.Box 740, S-220 07 Lund 7, Sweden

The mixed complexes formed between mercury(II), hydroxide and iodide in solutions with 0.5 M sodium perchlorate as supporting electrolyte have been studied at 25°C, by measuring the emf of the cell
\[\text{GE|SrSE+} \]
where GE is a glass electrode and SE a standard reference electrode. S had the general composition: \(B \text{Hg(II), } H \text{H}^+ \), (0.5 M - 2B - H) \(Na^+ \), \(X^- \), (0.5 M - X) \(ClO_4^- \). The ratio \(X/B \) was 0.5 or 1.0. The experimental data \(Z \) (average number of \(OH^- \) bound per mercury(II)) as a function of \(\log h \) could be described by assuming one mixed complex, viz. \(\text{HgOHI} \). The equilibrium constant, \(\beta_{1,1,1} \), for the reaction

\[\text{Hg}^{2+} + \text{I}^- + \text{H}_2\text{O} \rightleftharpoons \text{HgOHI} + \text{H}^+ \]

was determined as \(\log \beta_{1,1,1} = 8.9 \pm 0.1 \).

The equilibrium between mercury and iodide with 0.5 M \(\text{NaClO}_4 \) as supporting electrolyte has been studied by Sillén et al.\(^1\)\(^-\)\(^3\) by emf measurements and by Marcus\(^4\) using distribution equilibrium methods. Their results are shown in Table 1. Sillén's values have been used in the calculations. Analogously to the hydrolysis of the mercury bromide,\(^5\) it is \(K_{1,2} \), the equilibrium constant for the reaction

\[\text{Hg}^{2+} + \text{HgI}_2 \rightleftharpoons 2 \text{HgI}^+ \] \hspace{1cm} (1)

that together with \(\beta_{1,1,0} \) and \(\beta_{2,1,0} \), has to be known when computing the equilibrium constant \(K_{1,1} \), for the reaction

\[\text{HgI}^+ + \text{H}_2\text{O} \rightleftharpoons \text{HgOH} + \text{H}^+ \] \hspace{1cm} (2)

Table 1 also gives \(K_n \), the equilibrium constant for the reaction

\[\text{HgI}_{n-1}^{2-n} + \text{I}^- \rightleftharpoons \text{HgI}_n^{2-n} \] \hspace{1cm} (n = 1,2,3,4) \hspace{1cm} (3)

The equilibrium constant for the reactions

\[\text{Hg}^{2+} + \text{H}_2\text{O} \rightleftharpoons \text{HgOH}^+ + \text{H}^+ \] \hspace{1cm} (4)

and

\[\text{Hg}^{2+} + 2 \text{H}_2\text{O} \rightleftharpoons \text{Hg(OH)}_2 + 2 \text{H}^+ \] \hspace{1cm} (5)

Acta Chem. Scand. 27 (1973) No. 8
Table 1. Equilibrium constants for the system Hg$^{2+}$ – I$^{-}$.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Method</th>
<th>K_{1}</th>
<th>log (K_1/M)</th>
<th>K_2/M</th>
<th>log (K_2/M)</th>
<th>K_3/M</th>
<th>log (K_3/M)</th>
<th>K_4/M</th>
<th>log (K_4/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sillén et al 1949 1,2</td>
<td>red, Hg 115</td>
<td>12.87</td>
<td>10.95</td>
<td>3.78</td>
<td>2.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sillén 1949 3</td>
<td>distr. 81</td>
<td>3.67</td>
<td>2.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

have been taken from the work by Hietanen and Sillén, 10 log $(\beta_{1,0}/M) = -3.70 \pm 0.07$, log $(\beta_{2,1,0}/M^2) = -6.30 \pm 0.05$.

EXPERIMENTAL

Chemicals. Sodium perchlorate, perchloric acid, sodium hydroxide, silver perchlorate, and mercury perchlorate were prepared as described previously.$^{5-6}$ Sodium iodide (Mal- linckrodt, p.a.) was analysed potentiometrically.

Details of the emf measurements. In order to produce hydrolysed solutions of $u = 1.0$ the following solutions were carefully mixed into the titration vessel. Since HgI$_4$ is the least soluble species especially the additions of S$_6$ had to be performed very slowly to avoid Tyndall effects.

S_1: 0.75 mM Hg(II), 0.08 mM H$^+$, 498.5 mM Na$^+$, 500 mM ClO$_4^-$.
S_2: 0.75 mM Hg(II), 0.08 mM H$^+$, 498.5 mM Na$^+$, 496.3 mM ClO$_4^-$, 3.75 mM I$^-$.
S_3: 1.50 mM Hg(II), 0.16 mM H$^+$, 496.8 mM Na$^+$, 500 mM ClO$_4^-$.
S_4: 1.50 mM Hg(II), 0.16 mM H$^+$, 496.8 mM Na$^+$, 492.5 mM ClO$_4^-$, 7.5 mM I$^-$.
S_5: 13.38 mM NaOH 500 mM ClO$_4^-$.

The ratio of the volumes of S_1 and S_2 was 4:1 and of S_3, S_4 and S_5 4:1:5.

$S_6 = S_1 + S_2 + S_3 + S_4 + S_5$

The solutions S_1 and S_2 were prepared from 100 mM stock solutions of Hg(II) perchlorate. S_3 and S_4 originated from stock solutions of sodium iodide and mercury(II) perchlorate.

Magnetic stirring was applied and N_1 was passed through the solution. This was then immediately titrated with an acid solution which had the same values of B and X as had S_6.

LIST OF SYMBOLS

B = total Hg(II) concentration.
b = concentration of Hg$^{2+}$.
X = total halogen concentration.
x = concentration of free halogenide.
$u = X/B$.
H = analytical hydrogen ion excess concentration.
h = actual concentration of hydrogen ion.
$a = h^{-1}$.
$\beta_{p,q,r}$ = equilibrium constant for the reaction

$$qHg^{2+} + pH_2O + rX^- \rightleftharpoons Hg_q(OH)_pX_r^{2q-p-r} + pH^+$$

(6)
Z average number of hydrogen ions split off per Hg(II)

\[BZ = h - H = p \beta_{p_4} b^p h^{-p} x^p \]

(7)

\(Kn \) = equilibrium constant for the reaction

\[\text{HgX}_{n-1} + X^- \rightleftharpoons \text{HgX}_n; \quad n = (1,2,3,4) \]

(8)

\(K_{1,2} \) = equilibrium constant for the reaction

\[\text{Hg}^{2+} + \text{HgX}_2 \rightleftharpoons 2 \text{HgX}^+ \]

(9)

MEASUREMENTS AND CALCULATIONS

Potentiometric measurements were performed in the cell previously described.\(^5\) The solutions S in the titration vessel had compositions analogous to those described for the bromide systems, i.e. \(X/\beta\) was maintained constant in each titration. However, the low solubility of mercury(II) iodide further complicated the study of the mercury–hydroxide–iodide system. When \(u = 0.5\), \(B\) was 5.00 mM or 2.5 mM. The concentration of free iodide, \(x\), increases both with \(u\) and \(-\log h\).

When \(u = 1.0\), it was necessary to lower the total iodide concentration in order to obtain a hydrolysed solution without precipitation of red HgI\(_2\). Therefore the value of \(B\) was chosen as 0.75 mM.

![Figure 1](image)

Fig. 1. The formation of hydroxo complexes in solutions containing mercury(II) and iodide. The curves have been calculated from the equilibrium constants in Table 3. The experimental points are denoted O, Δ, □, and △ for \(B = 10, 5, 2.5, \) and 0.75 mM, respectively.

Acta Chem. Scand. 27 (1973) No. 8
Table 2. Survey of titrations.

\[
\begin{align*}
\log (h/M), Z: & 3.548, 1.001; 3.526, 0.985; 3.485, 0.949; 3.448, 0.915; \\
& 3.441, 0.881; 3.364, 0.831; 3.318, 0.782; 3.277, 0.733; 3.219, 0.671; \\
& 3.094, 0.522; 2.976, 0.395; 2.861, 0.288; 2.746, 0.204; 2.637, 0.146; \\
& 2.541, 0.105; 2.455, 0.083; 2.384, 0.062; 2.271, 0.050; 2.180, 0.023; \\
& 2.080, 0.011; 2.002, 0.010. \\
\end{align*}
\]

\[
\begin{align*}
\log (h/M), Z: & 4.642, 1.444; 4.527, 1.424; 4.432, 1.404; 4.349, 1.384; \\
& 4.275, 1.365; 4.215, 1.346; 4.153, 1.327; 4.051, 1.290; 3.967, 1.254; \\
& 3.893, 1.218; 3.821, 1.184; 3.762, 1.150; 3.707, 1.117; 3.656, 1.084; \\
& 3.590, 1.036; 3.532, 0.989; 3.461, 0.928; 3.385, 0.854; 3.318, 0.783; \\
& 3.257, 0.716; 3.204, 0.716; 3.101, 0.532; 3.010, 0.429; 2.919, 0.350; \\
& 2.842, 0.277; 2.768, 0.226; 2.640, 0.160; 2.540, 0.115; 2.423, 0.082; \\
& 2.337, 0.053. \\
\end{align*}
\]

\[
\begin{align*}
\log (h/M), Z: & 4.482, 0.888; 4.448, 0.880; 4.414, 0.867; 4.357, 0.853; \\
& 4.304, 0.837; 4.255, 0.821; 4.211, 0.805; 4.105, 0.765; 4.025, 0.727; \\
& 3.886, 0.655; 3.765, 0.692; 3.663, 0.533; 3.578, 0.479; 3.499, 0.432; \\
& 3.397, 0.371; 3.308, 0.317; 3.229, 0.278; 3.161, 0.243; 3.080, 0.202; \\
& 2.995, 0.169; 2.925, 0.143; 2.804, 0.116; 2.714, 0.093; 2.640, 0.078; \\
& 2.578, 0.064; 2.539, 0.043; 2.478, 0.056; 2.403, 0.046. \\
\end{align*}
\]

Values of \(Z\), plotted as a function of \(\log h\), is shown in Fig. 1. The complete data for all the titrations are given in Table 2.

For solutions having a constant \(X/B\), the experimental \(Z(\log h)\) curves coincide for different \(B\)-values. They may be described by assuming one mixed complex, HgI1OH, corresponding to that of the bromide system. Since the mercury iodide complexes are stronger than the corresponding bromide ones, \(x\) has a lower value in the iodide solutions. The same approximations as in Ref. 5 are consequently allowed and we obtain:

\[
\frac{u}{B} = \frac{\beta_{0,1,1} x + 2 \beta_{0,1,2} x^2 + \beta_{1,1,1} a x}{1 + \beta_{1,1,0} x^2 + \beta_{2,1,0} x^2 + \beta_{0,1,1} x + \beta_{0,1,2} x^2 + \beta_{1,1,1} a x}
\]

(10)

\[
Z = \frac{(\beta_{1,1,0} x + 2 \beta_{2,1,0} x^2 + \beta_{1,1,1} a x)(2 - u)}{2(1 + \beta_{1,1,0} x + \beta_{2,1,0} x^2 + \beta_{0,1,1} x + \beta_{1,1,1} a x)}
\]

(11)

\(Z\) is a function of the two independent variables \(u\) and \(a\).

Comparison of the experimental \(Z\) curves to those calculated from (14), assuming different values of \(\beta_{1,1,1}\) gives the best fit when \(\log \beta_{1,1,1} = 8.9 \pm 0.1\).

The experimental data were treated by means of the computer program "Letagrop", designed by Sillén et al. The equilibrium constants that minimized the error square sum

\[
U = \sum (Z_{\exp} - Z_{\text{calc}})^2
\]

(12)

was sought.

The values, obtained by the computer are given in Table 3. In the first row all points in Table 2 were used. When the errors in \(H_\theta\), \(H_T\) and \(E_\theta\) were treated

Acta Chem. Scand. 27 (1973) No. 8
Table 3. Survey of equilibrium constants in the system Hg(II) — OH — I.

<table>
<thead>
<tr>
<th>Constant</th>
<th>All points</th>
<th>$X/B = 0.5$</th>
<th>$X/B = 1.0$</th>
<th>Curve-fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{0,1,1}/M^{-1}$</td>
<td>7.6×10^{13}</td>
<td>7.4×10^{13}</td>
<td>$(1.2 \pm 0.1)10^{13}$</td>
<td>7.4×10^{13}</td>
</tr>
<tr>
<td>$\beta_{0,1,3}/M^{-2}$</td>
<td>$(8 \pm 1)10^{13}$</td>
<td>$(12.2 \pm 0.5)10^{13}$</td>
<td>$(8.2 \pm 1.6)10^{13}$</td>
<td>6.6×10^{13}</td>
</tr>
<tr>
<td>$\beta_{1,1,0}/M$</td>
<td>$(2.21 \pm 0.04)10^{-4}$</td>
<td>$(2.24 \pm 0.09)10^{-4}$</td>
<td>2.00×10^{-4}</td>
<td>2.00×10^{-4}</td>
</tr>
<tr>
<td>$\beta_{1,1,0}/M$</td>
<td>$(5.35 \pm 0.05)10^{-7}$</td>
<td>$(5.35 \pm 0.30)10^{-7}$</td>
<td>5.01×10^{-7}</td>
<td>5.01×10^{-7}</td>
</tr>
<tr>
<td>$\beta_{1,1,1}$</td>
<td>$(8.4 \pm 0.5)10^8$</td>
<td>$(6.5 \pm 0.1)10^8$</td>
<td>$(18 \pm 2)10^8$</td>
<td>$(8 \pm 2)10^8$</td>
</tr>
</tbody>
</table>

As unknown constants, the computer gave high values for E_0 in the last titration ($X/B = 1.0$), where the solutions were supersaturated with respect to HgI₂. Therefore the data from this titration were also handled separately. In this way the second and third rows of Table 3 have been obtained.

Only one mixed complex, Hg(OH)I, was found. Its stability constant $\beta_{1,1,1}$ was $(8 \pm 2) \times 10^8$.

Fig. 2. The distribution of the complexes Hg(OH)$_p$I$_{n-p}$ as a function of $-\log h$.

Acta Chem. Scand. 27 (1973) No. 8
RESULTS AND COMMENTS

The distributions of the various species as functions of $-\log h$ at $X/B = 0.5$ and 1.0 is shown in Fig. 2.

The hydrolysed solutions were supersaturated with respect to HgI$_2$, as is seen from the following values which correspond to some of the highest points of the Z curves:

<table>
<thead>
<tr>
<th>u</th>
<th>$-\log(h/M)$</th>
<th>B/M</th>
<th>[HgI$_2$/M]</th>
<th>[Hg(OH)$_2$/M]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4.6</td>
<td>0.0025</td>
<td>2×10^{-4}</td>
<td>1.4×10^{-3}</td>
</tr>
<tr>
<td>0.5</td>
<td>3.5</td>
<td>0.005</td>
<td>0.9×10^{-4}</td>
<td>1.6×10^{-3}</td>
</tr>
<tr>
<td>1.0</td>
<td>4.5</td>
<td>0.00075</td>
<td>2×10^{-4}</td>
<td>0.20×10^{-3}</td>
</tr>
</tbody>
</table>

From Biedermann and Sillén’s 8 determination of the solubility of HgI$_2$ it follows that [HgI$_2$] = 7×10^{-5} M in a saturated solution of mercury(II) iodide. A comparison with the value of [Hg(OH)$_2$] = 0.2×10^{-3} M in solutions saturated with mercury(II) oxide, which can be deduced from Garett’s work,9 indicates that the two first solutions are also supersaturated with respect to Hg(OH)$_2$.

In a previous publication 5 the acidity of some species HgX$^+$ are given and discussed. For the iodide one gets $K_{1,1} = \beta_{1,1,1} / \beta_{0,1,1} = 1.0 \times 10^{-4}$ M, i.e. HgI$^+$ is a weaker acid than the other mercury monohalide ions studied.

If statistical reasons alone determined the equilibrium constants, $\beta_{1,1,1}$ could be calculated from the relation $\beta_{1,1,1} = (\beta_{0,1,0})^2$, which gives $\beta_{1,1,1} = 11 \times 10^8$, close to the experimental value $(8 \pm 2) \times 10^8$.

The value of $\beta_{1,1,1}$ depends on many different constants taken from literature. Systematic errors may also be present because it was rather difficult to prepare a clear S_0-solution. Therefore the real error in $\beta_{1,1,1}$ might be much larger than that calculated by the computer.

My thanks are due to Professor Nils Ingri and Professor Ido Leden for valuable discussions.

REFERENCES

7. Ingri, N. and Sillén, L. G. Private communication.

Received April 21, 1973.