Carbon-13 Nuclear Magnetic Resonance of Tris(diamine)-cobalt(III) Complexes
Sven Bagger, Ole Bang and Flemming Woldbye

Chemistry Department A, The Technical University of Denmark, Building 207, DK-2800 Lyngby, Denmark

In our study of conformations in five- and sixmembered metal-diamine rings we have applied the technique of Fourier transform 13C-NMR to a series of tris(diamine)cobalt(III) complexes.

In the only previous 13C-NMR study of diamagnetic diamine complexes known to us it was reported that at 15.1 MHz the 13C chemical shifts between some free 1,2-diamines and the same diamines coordinated to cobalt(III) were negligible within the experimental uncertainty of 5 ppm. This finding might suggest that constancy of chemical shifts would limit the structural information that could be obtained by the technique.

Furthermore, it is known that the 1H-NMR spectra of tris(diamine)cobalt(III) consistently exhibit broad, rather unresolved bands (Fig. 1) due to spin-spin coupling over three bonds of the protons with 59Co ($I = 7/2$, 100% natural abundance); 59Co decoupling is necessary to get sufficient resolution for accurate analysis.5 A similar complication might arise in the 13C-NMR spectra, especially because only two bonds separate the cobalt nucleus from its nearest carbon atoms.

The proton-decoupled 22.63 MHz 13C-NMR spectra reported here were obtained by means of a Bruker WH 90 spectrometer using the Fourier transform technique, which allows measurement of samples with 13C in natural abundance (1.1%); the solvent was D$_2$O, and the spectra were run at ambient temperature. δ-Values are given relative to TMS; dioxane ($\delta = 67.40$) served as an internal standard.

[Co(en)$_2$(i-bn)$_3$]$^{3+}$ was prepared by reacting trans:[Co(en)$_3$Cl$_2$]$^+$ with i-bn. All other complexes were obtained by the general procedure described earlier8 for preparation and chromatographic separation of "mixed" tris-complexes.

The carbon skeletons of the ligands involved and the letter indices used are shown in Fig. 2.

\[
\begin{align*}
\text{N} & \text{C} & \text{C} & \text{N} \\
\text{a} & \text{a} & \text{a} & \text{en} \\
\text{N} & \text{C} & \text{C} & \text{N} \\
\text{b} & \text{c} & \text{b} & \text{tn} \\
\end{align*}
\]

\[
\begin{align*}
\text{N} & \text{C} & \text{C} & \text{N} \\
\text{d} & \text{d} & \text{d} & \text{m-bn} \\
\text{N} & \text{C} & \text{C} & \text{N} \\
\text{g} & \text{f} & \text{h} & \text{i-bn} \\
\end{align*}
\]

Fig. 2.

Fig. 3 illustrates the quality of the spectra obtained. The experimental uncertainty of peak positions is ca. 0.1 ppm.

\[
\begin{align*}
\text{Dioxane} & & \text{C(b)} & & \text{Frequency} \\
\text{C(a)} & & \text{C(c)} & & \\
\end{align*}
\]

Fig. 3. Illustrative example of the 22.63 MHz 13C NMR spectra. 0.246 g [Co(en)(tn)$_2$]Cl$_3$ and 20 μl dioxane in 1.3 ml D$_2$O. (4000 pulses, 4K input data points, 1 s sampling time.)
In contrast to the 1H spectrum (Fig. 1) the 13C spectrum exhibits well-resolved and sharp lines, and thus 13C-59Co spin-spin coupling does not significantly influence the resolution.

Assignments and chemical shift data are outlined in Fig. 4.

It appears that chelation of the diamines causes distinct chemical shifts, and characteristic patterns for the different complexes result.

The 13C-resonances of both the CH$_3$ (e) and CH (d) moieties in [Co(en)$_2$(m-bn)]$^{3+}$ are split into two lines, and this is consistent with the presence of both an equatorial and an axial methyl group on the puckered five-membered Co-m-bn ring.4 Similarly [Co(en)$_2$(i-bn)]$^{3+}$ contains an equatorial and an axial methyl group, but in this case they are bound to the same carbon atom, and this causes a smaller chemical shift difference between the two CH$_3$ lines (h).

The methylene groups bound to nitrogen in the six-membered Co-tn rings in [Co(en)$_2$(tn)$_2$]$^{3+}$ give rise to two peaks (b). This is tentatively explained by assuming that different conformations, e.g. chair and skew-boat forms,4,8 of the Co-tn rings are present.

Clearly, 13C-NMR spectroscopy offers new possibilities for conformational studies of chelate diamine rings in diamagnetic complexes.

The NMR spectrometer was made available by Statens Naturvidenskabelige Forskningsråd; we thank Dr. Klaus Bock for advice in the use of the instrument.

Received June 1, 1973.

Acta Chem. Scand. 27 (1973) No. 7