C₅H₁₂S₂ (172.32); C 55.76; H 7.02; S 37.22.

VPC analyses were performed on a Perkin Elmer 900 Gas Chromatograph. IR spectra were recorded on a Perkin Elmer 257 Grating Infrared Spectrophotometer, NMR spectra on a Varian A-60 spectrometer and mass spectra on an LKB 9000 mass spectrometer.

Acknowledgements. Grants from the Swedish Natural Science Research Council to S.G. and from the Royal Physiographic Society to T.F. are gratefully acknowledged.

15. Gronowitz, S. and Frejd, T. To be published.

Received August 23, 1973.

Reactivation of Phosphorylated Cholinesterase by Some Imidazole-substituted Oximes

TOM KARLSSON, KARL-ERLAND STENSIÖ and KERSTIN WAHLBERG

Research Institute of National Defence, Department 1, S-172 84 Sundbyberg 4, Sweden

Nucleophilic agents such as oximes have been employed in restoring the activity of cholinesterase (ChE) which has been inactivated by organophosphorus compounds. Methyl-quinernized pyridiniumaldoximes have been found particularly effective. By a suitable modification of the substituent on the nitrogen, an increase in the reactivation rate was obtained. Our intention has been to study the effect of an imidazole substituent in the pyridine aldoxime.

There is strong evidence that imidazole is part of the active site of ChE. Furthermore, imidazole has a well documented catalytic capacity, e.g. for ester hydrolysis, both as a nucleophile itself and as a catalyst in a general acid-base catalyzed reaction. Thus it would be of interest to study the effect on the reactivation process of a properly spaced imidazole group.

Moreover, imidazole-substituted oximes may participate in the degradation of organophosphorus compounds before they reach the active site of the enzyme.

The syntheses were performed by reacting 4(5)-chloromethylimidazolylhydrochloride or 4(5)-(2-bromoethyl)imidazolylhydrobromide with the appropriate pyridine aldoxime in dimethylformamide. However, it was not possible to obtain the 2-aldoxime of N-((imidazol-4-yl)methyl)pyridinium bromide by this procedure. The difficulties with quaternization of 2-pyridine aldoximes have been pointed out previously by Pozimek et al. The reactivator potency against BuChE inhibited by methylisopropoxyphosphoryl fluoride (Sarin) is illustrated in Table 1. It is evident that I and II are slightly more active than 2-(hydroxyimino)-methylpyridinium methanesulphonate (P2S), a compound used as an antidote in nerve gas poisoning and as a standard in reactivation experiments. None of the compounds I—V is able to reactivate the enzyme after inhibition with dimethylamidoethoxy-
SHORT COMMUNICATIONS

<table>
<thead>
<tr>
<th>Substance</th>
<th>m.p. (°C)</th>
<th>Crude yield (%)</th>
<th>Recrystallization</th>
<th>Elemental analysis</th>
</tr>
</thead>
</table>
| I | 215-217 | 78 | EtOH-H₂O (9:1) | Found: C 43.7; H 4.41; N 20.5.
Calc. for C₁₅H₁₆N₄OCl₂;
C 43.71; H 4.40; N 20.4. |
| II | 212-213 | 85 | MeOH | Found: C 43.7; H 4.44; N 20.5. |
| III | 242-243 | 88 | EtOH-H₂O (9:1) | Found: C 43.4; H 4.42; N 20.4. |
| IV | 231-232 | 73 | 95% EtOH | Found: C 35.0; H 3.81; N 15.0.
Calc. for C₁₁H₁₄N₂OBr₂;
C 35.0; H 3.73; N 14.82. |
| V | 232-234 | 68 | 95% EtOH | Found: C 35.0; H 3.81; N 15.0. |

Table 1. Structural formulae of some imidazole substituted pyridine oximes and their reactivating effect on Sarin inhibited BuChE. The inhibiting effect of the oximes alone on BuChE are expressed in molar I₅₀ values.

![Structural formula](image)

<table>
<thead>
<tr>
<th>Substance</th>
<th>n</th>
<th>Substitution in the pyridine ring</th>
<th>Conc. of reactivator M</th>
<th>Restored enzyme activity %</th>
<th>I₅₀ BuChE M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>2</td>
<td>1.25 x 10⁻⁴</td>
<td>57</td>
<td>6.2 x 10⁻⁴</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>3</td>
<td>1.25 x 10⁻⁴</td>
<td>54</td>
<td>6.0 x 10⁻⁴</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>4</td>
<td>2.5 x 10⁻⁴</td>
<td>40</td>
<td>1.9 x 10⁻³</td>
</tr>
<tr>
<td>IV</td>
<td>2</td>
<td>3</td>
<td>2.5 x 10⁻⁴</td>
<td>25</td>
<td>7.7 x 10⁻⁴</td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>4</td>
<td>2.5 x 10⁻⁴</td>
<td>37</td>
<td>3.7 x 10⁻³</td>
</tr>
<tr>
<td>P2S</td>
<td>-</td>
<td>-</td>
<td>3.67 x 10⁻⁴</td>
<td>55</td>
<td>8.1 x 10⁻⁴</td>
</tr>
</tbody>
</table>

phosphoryl cyanide (Tabun) or methyl-
phosphacoloxophosphoryl fluoride (Somar).

An interesting feature is that compound II with the oxime group in the 3-position is equally effective as a reactivator as the isomers (I, III) substituted in the 2- and 4- positions. This is in contrast to the behaviour of (hydroxylimino)methylpyridinium isomers, where the 3-isomer has a very small reactivation capacity. The relatively good effect of II and also of IV can be attributed to the catalytic assistance of the imidazole group in the reactivation procedure and to a modification of the acid strength of the oxime group. Most of the compounds which are effective reactivators are also ChE inhibitors. This reflects the fact that a certain fit to the active site is required in order to get a reactivation. Table 1 gives the I₅₀ values for the inhibition of BuChE by compounds I—V. The 4-substituted compounds III and V have only about 15–30% of the inhibiting activity given by the other substances but show a reasonable reactivation capacity. A preliminary pharmacological investigation shows that II is not very toxic having an LD₅₀ (mice, i.p.) of 184 mg/kg compared to 216 mg/kg for P2S.⁴

Experimental. Lyophilized horse serum pseudocholinesterase (BuChE) with the activity 5232 Warburg units per mg was purchased from Diosynth International NV, the Netherlands. The phosphorus compounds were synthesized in this laboratory.

Reactivation experiments. The ChE activity was measured by an electrometric method⁷

Acta Chem. Scand. 27 (1973) No. 6
with acetylcholine \((14 \times 10^{-4} \text{ M})\) as substrate, ChE was completely phosphorylated by incubation with \(10^{-4} \text{ M}\) Sarin, Soman, or Tabun and excess inhibitor removed by dialysis. After dialysis a check was made that no phosphorus compound was left.\(^5\) The reactivation experiments were performed at 25° for 90 min in a Michels buffer \(^4\) at pH 8.14. Reactivation is given as a percentage of the ChE activity in an enzyme control containing the reactivator but no phosphorus compound.

Synthesis. 4(5)-Chloromethylimidazole hydrochloride was prepared according to Turner *et al.*,\(^3\) 4(5)-Bromoethylimidazole hydrobromide was prepared from histamine.\(^10\) The pyridinealdoximes used have the following m.p.: 2-aldoxime 109—111° (lit.,\(^11\) 114°), 3-aldoxime 148—150° (lit.,\(^11\) 150—151°), 4-aldoxime 130—132° (lit.,\(^11\) 132°). The quaternizations were performed in dimethylformamide at 50° for about 12 h using two equivalents of aldoxime. After cooling and chloroform addition, the precipitate was filtered, washed with chloroform and recrystallized.

The reactions could be followed by TLC on silica gel with pentanol-acetic acid-acetone-water (56:24:14) as eluent. Compounds containing the imidazole ring were detected by spraying with a diazonium salt (Echtblausalz B). For the other compounds, Dragendorff’s reagent was used.

Received August 7, 1973.