Inhibition of Duodenal Pancreatic Enzymic Activities by Polyphloretin Phosphate with Special Reference to Phospholipase A$_2$

B. ARNESJÖ, I. IHSE and I. QVIST

Department of Surgery, University Hospital of Lund, S-221 85 Lund, Sweden

Polyphloretin phosphate (PPP) is a substance capable of inhibiting the effects of prostaglandins, trombin, and certain enzymes such as alkaline phosphatase and hyaluronidase. Hyaluronidase is completely inhibited in an environment containing 1–2 μg/ml PPP. The molecular weight of PPP is about 15,000 and it is only to a minor extent — if any — split or absorbed from the intestine.¹ It has been shown to be useful in cases with ulcerative colitis.² This beneficial effect in cases with ulcerative colitis has been ascribed its membrane tightening effect as in this disease the permeability of the colonic mucosa is increased with protein leakage as a consequence. This membrane tightening effect of PPP might be explained by its capability of inhibiting hyaluronidase. Lecithin is another compound that is one of the main components of cell membranes. In the present investigation, therefore, we have found it interesting to study the effect of PPP on the in vitro activity of pancreatic enzymes, especially on phospholipase A$_2$ which in the intestine splits lecithin to lysolecithin the latter of which might be highly toxic to cell membranes in patients with inflammatory intestinal diseases.

Materials and methods. Polyphloretin phosphate (PPP standard IV batch number Leo 101K) was a gift from AB Leo, Helsingborg, Sweden. It contained 93.5 % PPP. Contaminants were pyridine (2.7 %) sodium chloride (2.4 %), phosphoric acid (0.2 %) and water.

Phospholipase A$_2$ activity was estimated according to Ihse and Arnesjö,³ lipase according to Erlanson and Borgenström,⁴ and trypsin by a modified version of the method of Hummel.⁴ All enzyme assays were run using a pH-stat (Radiometer, Copenhagen) with a TTT2 titrator connected to an ABU11 Burette Unit with a 0.25 ml burette and a thermostatically controlled TTA31 titrator assembly.

Sodium taurodeoxycholate (NaTDC) was synthesized according to Norman⁵ as modified

Received June 22, 1973.

Acta Chem. Scand. 27 (1973) No. 6
under fluoroscopic control and after testmeal stimulation of the pancreatic secretion. PPP in different concentrations was added to the substrate solution.

All numerical values given in results represent the average of three determinations.

Results. As is shown in Fig. 1 the phospholipase A activity was inhibited about 30% with a PPP concentration of the substrate solution of 25 µg/ml, 85% with a PPP concentration of 500 µg/ml and 100% with 1 mg PPP/ml. Fig. 2 demonstrates the PPP inhibition with different concentrations of bile salt. The paralllelity between the phospholipase activity measurements with or without PPP at different bile salt concentrations indicates that the inhibitory effect is independent of the bile salt concentrations. Duodenal phospholipase A activity is dependent on the presence of calcium. As is shown in Fig. 2 the PPP inhibition of phospholipase A is the same irrespective of the calcium concentrations. The pH optimum for the phospholipase A activity of duodenal contents is 7.5 pH. This optimum was not shifted in the presence of

![Fig. 1. Inhibition of trypsin, lipase, and phospholipase A by different concentrations of polyphloretin phosphate.](image)

![Fig. 2. The influence of calcium, bile salt, pH, and temperature on polyphloretin phosphate inhibition of duodenal phospholipase A.](image)

Acta Chem. Scand. 27 (1973) No. 6
PPP (Fig. 2). The temperature optimum was also unaltered in the presence of PPP (Fig. 2).

Fig. 1 shows that the lipase activity of duodenal contents was found to be incompletely inhibited by relatively high concentrations of PPP. The inhibitory effect with a concentration of 100 μg PPP/ml substrate solution was 25% while it was 50% with 500 μg PPP/ml.

A maximal inhibition of the trypsin activity of duodenal contents of about 10% was found even with high concentrations of PPP.

Discussion. The results of the present study indicate that PPP is a potent inhibitor of pancreatic phospholipase A in intestinal contents. This inhibition seems to be independent of the bile salt concentrations, the calcium concentration, the pH and the temperature of the incubation medium. Also duodenal pancreatic lipase was inhibited to a certain extent, whereas only slight inhibition, if any, of trypsin was found. PPP has been shown to exert a beneficial effect upon the protein losses via the colonic mucosa in patients with ulcerative colitis. A subdivided dose of 2 g PPP/day was given. Under such circumstances a total inhibition of the intestinal phospholipase A activity and, in addition, an moderate inhibition of the lipase activity should be expected. This latter possibility might explain that in cases with non-tropical sprue a beneficial effect on the protein leakage but no effect on the fecal fat excretion was obtained after peroral PPP administration.

The membrane tightening effect of PPP has been ascribed its capability of inhibiting hyaluronidase. Considering the fact that lecithin is a main component of cell membranes and that it is split by phospholipase A the beneficial effect of PPP in cases of ulcerative colitis may also be ascribed an inhibition of this latter enzyme by PPP.

1. Fredholm, B. AB Leo, Helsingborg, Sweden. Personal communication.
2. Krook, H. Personal communication.

Acta Chem. Scand. 27 (1973) No. 6

An Electron-Diffraction Investigation of the Molecular Structure of 1,2,4,5-Hexatetraene (Biallenyl) in the Vapour Phase

MARIT TRÆTTEBERG, Gunnar PAULEN and Henning HOFF

aDepartment of Chemistry, University of Trondheim, NLHT, N-7000 Trondheim, Norway and bInstitute of Organic Chemistry, University of Karlsruhe, 7500 Karlsruhe 1, German Federal Republic

The molecular structure of 1,2,4,5-hexatetraene (in the following called biallenyl) has been studied by the gas electron diffraction method. The compound used in the present study was synthesized from 3-bromo-1-propyne and magnesium metal with tetrahydrofuran as solvent.

Fig. 1. Biallenyl. Molecular model which shows the numbering of the atoms.

A complete spectroscopic study of the compound was recently carried out by Powell et al., based on a sample originating from the same source. They concluded from examination of the infrared and Raman spectra that the molecule has a center of symmetry corresponding to C_{3v} symmetry in which the hydrogen atoms of the CH$_2$ groups are twisted out of the molecular plane by 90°.

The electron-diffraction intensity data were obtained with the Oslo diffraction camera. Diffraction photographs were taken at two camera lengths (approximately 48 cm and 20 cm) at room temperature. For each camera length four plates were selected for the structure analyses. The data were treated in the usual way and yielded an experimental molecular intensity (sM(s)) function in the region from $s=1.25$ Å$^{-1}$ to about 44 Å$^{-1}$.