Zum alkalischen Abbau von Arylglycerin-β-(2,6-dimethoxy-4-alkylaryl)-ätherstrukturen*

GERHARD E. MIKSCHE

Institutionen für organisk kemi, Chalmers Tekniska Högskola och Göteborgs Universitet, Pack, S-402 20 Göteborg 5, Schweden

Die Lignine vieler Laubhölzer sind zu etwa gleichen Teilen aus Guajacylpropaneinheiten und Syringylpropaneinheiten aufgebaut. Wie am Lignin der Warzenbirke (Betula verrucosa) — einem typischen Laubholzling — gezeigt wurde, liegen die Syringylpropaneinheiten zum Großeil als Aroxyllreste in Arylglycerin-β-(2,6-dimethoxy-4-alkylaryl)-ätherstrukturen mit freier (I) oder verätherter (2) phenolischer Hydroxylgruppe vor. Die Kenntnis des Verhaltens dieser Strukturen beim Erhitzen unter alkalischen Bedingungen ist daher eine der Voraussetzungen für das Verständnis des Abbau von Laubholzligninen beim technischen Soda- und Sulfatcelluloseprozess (Erhitzen des

\[\begin{align*}
1 & \quad R = H \\
2 & \quad R = C
\end{align*} \]

\[\begin{align*}
3 & \quad R = H \\
4 & \quad R = C
\end{align*} \]

* IX. Mitteilung in der Reihe: Über das Verhalten des Lignins bei der Alkalikochung. VIII. Mitt. siehe Lit. 6b.

Acta Chem. Scand. 27 (1973) No. 4

Abbau von p-Hydroxyarylglucerin-β-(2,6-dimethoxy-4-alkylaryl)-ätherstrukturen (1). Der Verlauf des alkalischen Abbaus der p-Hydroxyarylglucerin-β-(2-methoxy-4-alkylaryl)-ätherstrukturen (3) des Nadelholzligins ist aufgrund von Modellversuchen bekannt; Strukturen vom Typ 3 sind in geringerer Frequenz auch in Laubholzliginen enthalten.9a Beim Erhitzen mit Natronlauge gab die Verbindung 5 (ein Modell für den Strukturtyp 3; das Fehlen des 4-Alkylsubstituenten am Aroxylrest von 5 ist ohne wesentlichen Einfluss auf den Reaktionsverlauf, vergl. Lit. 2) als Hauptprodukt (ca. 70 % d. Th.) den Styryl-aryläther 7,3,4

Ein dem Modell 5 entsprechendes Verhalten konnte beim alkalischen Abbau des 4-Hydroxy-3,5-dimethoxy-phenylglucerin-β-(2,6-dimethoxy-4-methylphenyl)-äthers (8), einem Modell für den Strukturtyp 1, erwartet werden. Die erythro- (8a) und die threo- (8b) Form dieses Modells gaben jedoch beim Erhitzen in 1 M NaOH auf 140° nur geringe Mengen (~ 5 %) der cis- (11a) und der trans- (11b) Form des erwarteten Styryl-aryläthers. Der Abbau von 8 verlief überwiegend unter Spaltung der Alkyl-arylätherbindung, wobei als Hauptprodukt (ca. 75 % d. Th.) 2,6-Dimethoxy-4-methyl-phenol (10) entstand.

Weiters wurden geringe Mengen der Phenole 12, 13, 14 und 19 aufgefunden; aus der Arylpropan-Einheit in 8 waren vorwiegend hörmolekulare Abbauprodukte gebildet worden.

Acta Chem. Scand. 27 (1973) No. 4
Das beim Abbau von 8b gebildete 2,6-Dimethoxy-4-methylphenol (10) wurde gaschromatographisch gemessen (Tab. 1). Die für eine Reaktion erster Ordnung in bezug auf Substrat berechneten Geschwindigkeitskonstanten fallen mit der Reaktionsdauer nur wenig ab. Sie zeigen auch, dass die Geschwindigkeit des Abbaus von 8b unabhängig von der Hydroxidionenkonzentration ist. Dies stimmt mit experimentellen Befunden zur Kinetik des alkalischen Abbaus des Modells 5 überein; der geschwindigkeitsbestimmende Schritt beim Abbau von 5 (threo- oder erythro-Form) ist die Bildung des Chinonmethids 6.5 Da der Abbau von 8b überdies mit etwa derselben Geschwindigkeit wie der von threo-55 verläuft, kann die Bildung des Chinonmethids 9 im langsamsten Schritt des Abbaus von 8b (oder 8a) als gesichert angesehen werden. Auch die Isomerisierung von threo- und erythro-20 in verdünnter Natronlauge verläuft über ein Chinonmethid; die etwa das zweifache der Isomerisierungsgeschwindigkeit von 20b ($T = 119,4^\circ$; $k \approx 2 \times 10^{-3} \text{ Min}^{-1}$)6b betragende Bildungsgeschwindigkeit des Chinonmethids von 20 kommt der Abbaugeschwindigkeit des Phenols 8b ($T = 120,9^\circ$; $k \approx 3.5 \times 10^{-3} \text{ Min}^{-1}$) nahe.

Bei der Sulfatkochung wurde 8b mit fast der gleichen Geschwindigkeit abgebaut wie bei der Sodakochung (Tab. 1). Die bei der Sodakochung gebildeten Nebenprodukte 12, 13, 14, und 19 fehlten jedoch fast vollständig. Auch hier ist Bildung des Chinonmethids 9 geschwindigkeitsbestimmend; entsprechendes wurde für die Sulfatkochung der beiden Formen von 5 und 20 gefunden.5

Für den Abbau des Modells 8 waren zunächst zwei mögliche Abbauwege inbetracht zu ziehen, die zu einer hydrolytischen Spaltung der Alkyl-arylätherbindung führen; sie sollen anschliessend diskutiert werden.

Es ist bekannt, dass beim alkalischen Abbau des Modells 20 größere Mengen Guajakol gebildet werden; die Bildung des Guajakols erfolgt allerdings langsam, verglichen mit der über das Chinonmethid von 20 verlaufenden Isomerisierung von 20a bzw. 20b.6 Für die Bildung von Guajakol aus 20 wurde eine intramolekulare nucleophile Substitution des Phenoxyrestes durch das Alkoxidion der benzylalkoholischen Hydroxylgruppe vorgeschlagen.6a Eine entsprechende Reaktion des Methyläthers von 20 ist bekannt;5 sie folgt dem Gesetz erster Ordnung in bezug auf Substrat und Hydroxidion.7 Da die Ge-

\textit{Acta Chem. Scand.} 27 (1973) No. 4
schwindigkeit der Bildung von 10 beim alkalischen Abbau von 8b von der
Hydroxidionenkonzentration unabhängig ist (Tab. 1), kann dieser Weg für
die Öffnung der Alkyl-arylätherbindung in 8 ausgeschlossen werden; vergl.
auch die Geschwindigkeiten der Bildung von 10 aus 8b und aus 37b (s.u.).

Weiters war als Abbauweg von 8 eine mögliche nucleophile Substitution
des Aroxylrestes im Chinonmethid 9 durch Hydroxidion inbetracht zu ziehen.
Das hierbei zu erwartende Chinonmethid 22 gibt, wie durch Sodakochung von
erythro-4-Hydroxy-3,5-dimethoxy-phenylglycerin (21) gezeigt wurde, ein
vorwiegend aus hörmolekularen Phenolen bestehendes Substanzgemisch.
Letzteres ist wahrscheinlich durch retro-Aldolkondensation von 22 zu 4-
Hydroxy-3,5-dimethoxy-phenylacetaldehyd (17) und Formaldehyd, gefolgt
von Selbstkondensation von 17, entstanden (vergl. Lit. 6a).

\[
\begin{align*}
\text{CH}_2\text{OH} & \quad \text{CH}_2\text{OH} & \quad \text{CH}_2\text{OH} \\
\text{OCH}_3 & \quad \text{OCH}_3 & \quad \text{OCH}_3 \\
\text{21} & \quad \text{22} & \quad \text{23}
\end{align*}
\]

*Tab. 1. Bildung von 2,6-Dimethoxy-4-methylphenol (10) aus threo-3,5-Dimethoxy-4-
hydroxyphenylglycerin-β-(2,6-dimethoxy-4-methylphenyl)-äther (8b) beim Erhitzen in
alkalischer Lösung auf 120°.*

<table>
<thead>
<tr>
<th>(c_{\text{NaOH}}) (Mol/l)</th>
<th>Reaktionszeit (Min)</th>
<th>gebildetes 10 (% d. Th.)</th>
<th>(k \times 10^{-3}) (Min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>23,2 (\ast)</td>
<td>4,4</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>23,3</td>
<td>3,9</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>33,9 (\ast)</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>32,4 (\ast)</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>32,6</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>35,8</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>44,4 (\ast)</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>42,7 (\ast)</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>43,5 (\ast)</td>
<td>3,2</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>42,1</td>
<td>2,9</td>
</tr>
<tr>
<td>0,3</td>
<td>112</td>
<td>36,4</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>47,6</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>285</td>
<td>60,5</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>362</td>
<td>67,0</td>
<td>3,1</td>
</tr>
<tr>
<td>0,2+</td>
<td>65</td>
<td>24,3</td>
<td>4,3</td>
</tr>
<tr>
<td>1 M Na(_2)S</td>
<td>136</td>
<td>41,2</td>
<td>3,9</td>
</tr>
<tr>
<td></td>
<td>207</td>
<td>58,3</td>
<td>3,7</td>
</tr>
</tbody>
</table>

\(\ast\) Bestimmt als Acetat.

Acta Chem. Scand. 27 (1973) No. 4

Das ebenfalls dargestellte Modell 32, in dem die Hydroxymethylgruppe der Verbindung 8 durch H ersetzt ist, gab bei der Sodakochung neben dem Haupt-

Acta Chem. Scand. 27 (1973) No. 4
produkt 10 (75 \%) 10 – 20 \% d. Th. von jedem der folgenden Phenole: 13, 14, 16 und 18, weiters die beiden Formen des Styryl-aryläthers 11 und Spuren der Phenole 12, 15 und 19.

Alle bekannten Reaktionen von Chinonmethiden, die in alkalischer Lösung aus p-Hydroxybenzylalkoholen entstehen, führen unter Wiederaufbildung des aromatischen Systems zu Phenolationen. Die Rearomatisierung erfolgt entweder durch Anlagerung von Nucleophilen an den Methid-Kohlenstoff des Chinonmethidsystems (Reaktionsweg A; vergl. z.B. Lit. 6a, 8, 9, 10) oder durch Heterolyse einer der von allylschen Kohlenstoffatom des Chinonmethids ausgehenden Bindungen (Reaktionsweg B; vergl. z.B. Lit. 2, 3, 4, 6a, 9, 10, 11) nach dem Schema:

Für die Spaltung der Alkyl-arylätherbindung ist also auch eine Heterolyse der allylschen C-OAr-Bindung in den Chinonmethiden der Modelle 8, 24 und 32 inbetracht zu ziehen (Reaktionsweg B; R = 2,6-Dimethoxy-4-methylphenoxy). Sie führt zu den Phenolatianonen der p-Hydroxystyrole 23, 26 und 18 sowie zum Phenonium von 10. Die Verbindungen 26 und 18 wurden tatsächlich als mengenmäßig bedeutende Produkte des Abbaus der Modelle 24 und 32 aufgefunden, der aus 8 zu erwartende Sinapylalkohol (23) ist dagegen unter den Bedingungen der Sodakochung instabil und konnte daher nicht als Abbauprodukt von 8 nachgewiesen werden. Das Phenol 10 sollte dann durch Reduktion des entsprechenden Phenoniums beim Abbau jedes der drei Modelle (8, 24 und 32) entstehen. Die gleichzeitig gebildeten Oxydations-

Acta Chem. Scand. 27 (1973) No. 4
produkte stammen, wie insbesonders die Produktzusammensetzung aus dem Abbau von 24 zeigt, sowohl aus der Arylpropaneinheit als auch aus dem β-Aroylrest. Die überraschend leichte Spaltbarkeit der C-OAr-Bindung in Chinonmethiden vom Typ der Verbindung 9 muss auf die o,o-Disubstition des Phenoxyrestes zurückzuführen sein. Bei entsprechenden o-monosubstituierten Chinonmethiden ist eine analog verlaufende Spaltung der Alkyl-arylätherbindung bestenfalls eine Nebenreaktion (vergl. den Nachweis der Bildung geringer Mengen von 26 bei der Sodakochung von 20).63, 10a

Die heterolytische Spaltung der allylischen C-S-Bindung in den bei der Sulfatkochung von 5 und 20 intermediär gebildeten Chinonmethiden 35 und 36 ist ebenfalls bekannt und als intramolekulare Redox-reaktion aufzufassen.10

Neben einer Heterolyse der Alkyl-arylätherbindung in Chinonmethiden vom Typ der Verbindung 9, die durch den polaren Charakter des Lösungsmittels begünstigt werden sollte, kann eine Homolyse nicht ausgeschlossen werden (Abbauweg C). Es bestehen hier Analogien zum Verhalten von p-Chinoläthern. 4-Aroyloxy-2,5-cyclohexadienone zerfallen in aprotischen Lösungsmitteln reversibel in die entsprechenden Phenoxyradikale.12 Im Phenoxyrest 2,6-disubstituierte Chinoläther sind um etwa 5 kcal/Mol energiereicher als die in diesen Positionen unsubstituierten Verbindungen; diese Destabilisierung wurde auf sterische Einflüsse zurückgeführt.13 Im Aroylrest 2,6-dissubstituierte Chinonmethide vom Typ der Verbindung 9 sind vinyloge p-Chinoläther, was ihren spontanen Zerfall verständlich erscheinen lässt.

Vielleicht ist auch die Bildung14 von Dihydro-dehydro-diconiferylalkohol beim Erhitzen einer wässrigen Lösung von Guajacylglycerin-β-dihydroconiferyläther auf eine homolytische oder heterolytische Spaltung der Alkyl-arylätherbindung des entsprechenden Chinonmethids zurückzuführen.

Der für die Modelle vom Strukturtyp I gefundene Abbauweg sollte auch für andere, im Phenoxyrest o,o-disubstituierte p-Hydroxyglycerin-β-aryläther gelten, so beispielsweise für die in Alkyl-aryläthersstrukturen verätherten phenolischen Kerne der 6,6'-Dihydroxy-5,5'-dimethoxy-biarylstrukturen und der 2-Hydroxy-3-methoxy-diarylätherstrukturen der Laubholz- und Nadelholz lignine.

Abbau von p-Alkoxyglycerin-β-(2,6-dimethoxy-4-alkylaryl)-ätherstrukturen (2). p-Alkoxyglycerin-β-arylätherstrukturen, in denen der Aroylrest

Acta Chem. Scand. 27 (1973) No. 4
ein 2-Methoxy-4-alkyl-aroxylrest ist (Typ 4), werden durch Erhitzen mit Alkali über Epoxide zu den entsprechenden p-Alkoxyarylglycerinen und 2-Methoxy-4-alkylphenolen abgebaut.3,15 Die Verbindung 37\textsubscript{b}, ein Modell für die p-Alkoxyarylglycerin-β-arylaetherstrukturen vom Typ 2 mit, gegenüber 4, einem zusätzlichen o-Methoxylsubstituenten im Aroxyrest, verhält sich auf gleiche Weise. Die Spaltungsgeschwindigkeit, bestimmt durch gaschromatographische Messung von 10, war etwa gleich gross ($T = 139.4^\circ, k = 1.2 \times 10^{-3}$ Min-1) wie die des Methyläthers von 5b ($T = 139.4^\circ, k = 1.5 \times 10^{-3}$ Min-1).7 Neben 10 entstand als Hauptprodukt das als Acetat nachgewiesene Arylglyce-

 Wie die Abbauversuche mit 8b und 37\textsubscript{b} zeigen, ist die Spaltungsgeschwindigkeit der Strukturen des Typs 2, verglichen mit der des Typs 1, gering. Beim alkalischen Abbau des Lignins wird also ein bedeutender Teil der Strukturen vom Typ 2 (R = das β-C-Atom einer Propanseitenkette) in Strukturen vom Typ 1 umgewandelt und in Form der letzteren weiter abgebaut. Es verhält sich somit ein grösserer Teil der Arylglyceerin-β-(2,6-dimethoxy-4-alkylaryl)-ätherstrukturen beim Abbau wie der Strukturtyp 1, als es aufgrund der Frequenz dieses Strukturtyps zu erwarten ist.

Darstellung der Modellverbindungen 8, 24 und 32. Die Synthese dieser Modelle lehnt sich an die von Adler und Eriksso beschriebene Darstellung16 des Modells 5 an; die Verbindungen 39 − 48 wurden als Zwischenstufen dar- gestellt.
Über die sterische Zuordnung der beiden Formen von 8 zur erythro- bzw. threo-Reihe mit Hilfe der Protonenresonanzspektren der Triacetate wurde bereits berichtet; die Zuordnung der beiden Formen von 24 erfolgte auf gleiche Weise.

EXPERIMENTELLER TEIL

Abbauversuche

Durch Ansaüern der bicarbonatalkalischen wässrigen Phase mit H₃PO₄ auf pH 1–2 und Extrahieren mit CHCl₃ wurden die sauren Reaktionsprodukte isoliert, die aber nicht weiter untersucht wurden.

Beiden jedem Versuch wurde angegeben: eingesetztes Modell (mg), Reaktionsdauer (Min), Neutralprodukte (mg), saure Produkte (mg).

Abbau von 8b (23,1; 180; 19,9; 2,2). Als Acetate wurden nachgewiesen: 10 (73 %), 11a und 11b (Auszüge insgesamt ~5 % d. Th.), 12 (Spuren), 13 (~5 %), 14 (~10 %), 19 (Spuren). Die Zuordnung der cis-Form für 11a und der trans-Form für 11b erfolgte durch Vergleich des gaschromatographischen Verhaltens mit dem der cis- und des trans-Acetats von 7; das cis-Acetat von 7 (stereochemische Zuordnung aufgrund des Protonenresonanzspektrums) besitzt die kürzere Retentionszeit (stationäre Phase SE-30) von beiden. Die erythro-Form 8a gab die gleichen Abbauprodukte wie 8b.

Abbau von 21 (15,2; 60; 14,2; nicht bestimmt). Als Abbauprodukte wurden nachgewiesen: 13 und 14. Der größte Teil des Reaktionsprodukts wanderte nicht im Dünnlichtchromatogramm (Kieselgel G; Aceton-Hexan 2:1; Sprühreagens H₂SO₄; Formalin 9:1).

Die hier verwendete höherschmelzende Form der Verbindung 21 (Schmp. 127°) besitzt, wie bereits früher angenommen, erythro-Konfiguration. Dies zeigt der Vergleich des Protonenresonanzspektren des Tetraacetats der höherschmelzenden Form von 21 (Schmp. 88–89° aus Essigester-Hexan) mit dem von erythro-Guaacylglycorin-tetraacetat. NMR (10 %): 2,00 (3) s, C-OCOCH₃; 2,05 (3) s, C-OCOCH₃; 2,14 (3) s, C-OCOCH₃; 2,32 (3) s, Ar-OCOCH₃; 3,85 (6) s, 2 OCH₃; 4,28 (2) d, H₂; 5,42 (1) dt, H₂; 0,02 (1) d, H₂; 7,14 (2) s, H₃; J₂₂ = 5,1 Hz; J₂₂ = 5,7 Hz.

Abbau von 24 (90 % erythro-, 10 % threo-Form. (22,1; 180; 19,8; 2,6). Als Acetate wurden nachgewiesen: 10 und 26b (Hauptprodukte), weithers 12, 13, 15, 19, 26a, 27, 28, 29 und 30.

Nach einem gesonderten Abbauversuch (200 Min) wurden 10 und 26b als Acetate gaschromatographisch bestimmt (auf einer 2 m langen, 3 Gew-% des Trägermaterials an SE-30 enthaltenden Trennsäule; innerer Standard Anisäure-methylster, Retentionszeit (160°) 2,4 Min; Bedingungen für die Gaschromatographie siehe unten). Die Ausbeute an 10 betrug 62 %, die an 26b 43 % d. Th.

Abbau von 32 (23,4; 120; 20,8; 3,1). Aufgefunken wurden: 10 (Hauptprodukt) 11a, 11b, 12 (Spuren), 13, 14, 15 (Spuren), 16, 18 und 19 (Spuren).

(Kieselgel G, Merck, Aceton-Hexan 1:2) zeigte keine langsamer als die Acetate von 37 und 38 laufende Verbindungen an und schließlich daher die Gegenwart von höhermolekularen Abbauprodukten aus.

Vergleichsubstanzen. Die Literaturangaben beziehen sich auf die Schmelzpunkts- oder Siedepunktsangaben der Acetate. Letztere wurden, mit Ausnahme des Acetats von 29, aus den entsprechenden Phenolen bzw. Alkoholen mit Acetanhydrid-Pyridin dargestellt. Die Acetate sämtlicher Vergleichsubstanzen lieferten mit den angegebenen Strukturen im Einklang stehende Massenspektren. Literaturangaben (Acetate): 2,6-Dimethoxyphenol (12), Syringaalkohol (13), 4-Hydroxy-3,5-dimethoxy-acetophenon (14), 4-Hydroxy-3,5-dimethoxy-benzylalkohol (15), 4,4'-Dihydroxy-3,3',5,5'-tetramethoxy-diphenylmethan (19), cis-Isouegenol (26a), trans-Isougenol (26b), Vanillin (27), 4-Hydroxy-3-methoxy-propionphenol (28), 1-(4-Hydroxy-3-methoxyphenyl)-2-propanon (29), 1-(4-Hydroxy-3-methoxyphenyl)-1-propanol (30). Die Acetate der Verbindungen 10, 16, 18 und 33 waren bisher nicht beschrieben worden.

Acetat von 10. Aus 2,6-Dimethoxy-4-methyl-phenol (10) mit Pyridin-Acetanhydrid. Farblose Nadeln vom Schmp. 77–78° aus Äther-Pentan.

Gaschromatographie. Gerät: Perkin-Elmer Modell 900. Trennsäule: aus nichtrostendem Stahl, 2 m lang, äußerer Durchmesser 0,3 cm. Trägermaterial: Chromosorb G, gewaschen mit Säure, behandelt mit Dimethyldichlorsilan. Stationäre Phase: Silikonolastorner SE-30, 3 Gew.-% des Trägermaterials. Arbeitsbedingungen: Injektor 250°, Trennsäule 160–255°, 5° per Min oder 160° bzw. 240° isotherm. Trägergas: N₂, Strömungsgeschw. 25 ml per Min. Retentionszeiten der Acetate: (Min). T = 160°: 10, 5, 5; 12, 3, 6; 13, 10, 14, 14, 15, 21, 3; 16, 22, 1; 18, 8, 3; 26a, 6, 8; 26b, 5, 5; 27, 4, 6; 28, 10, 3; 29, 9, 1; 30, 14, 3. T = 240°: 8b, 38, 9; 11a, 18, 7; 11b, 24, 2; 19, 17, 9; 21, 7, 6; 24b, 17, 2; 32, 24, 3; 37b, 29, 1; 38, 4, 3.

Teilmassenspektrum von 11a. Nur Ionen mit einer Massenzahl von ≥ 100 und einer relativen Intensität von ≥ 10 wurden betrachtet. m/e, rel. Int.: 388,35; 346, 100; 345, 11; 318, 48; 286, 13. 179, 17; 168, 16; 167, 18; 165, 12; 121, 13.

Teilmassenspektrum von 11b. Intensitätsgrenzen und Massenbereich wie bei 11a. m/e, rel. Int.: 388, 48; 346, 100; 345, 13; 318, 34; 286, 12; 179, 16; 168, 16; 167, 18; 165, 10; 121, 11. Die Masse des Moleküls wurde zu 388,1482 bestimmt (ber. für C₁₉H₁₄O₆: 388,1522). Die erheblich stärkere Fragmentierung des Moleküls der cis-Form 11a ist bemerkenswert.

Acta Chem. Scand. 27 (1973) No. 4.
ABBBA VON LIGNIN IX

Bestimmung von 10 als Acetat. Der Rückstand des CHCl₃-Auszugs der neutralisier-ten Kochlauge wurde mit 0,2 ml Pyridin-Acetanhydrid 1:1 acetyliert (48 Stunden, 25°). Dann wurde Methanol (2 ml) zugegeben und nach 30 Min bei 50°/1–2 Torr eingeengt. Rückstand gelöst in 1 ml CHCl₃, davon 1 μl zur gaschromatographischen Best.

Die Ergebnisse des Abbaus von 8b sind in Tab. 1 angegeben. Für 37b wurde gefunden (Reaktionstemperatur 139,4° ± 0,1°; Reaktionszeit 120 Min): 14,3 % und 14,8 % 10 k = 1,19 und 1,24 x 10⁻³ Min⁻¹.

Synthesen

4-Acetoxy-3,5-dimethoxy-α'-brom-acetophenon (40). Zu einer Lösung von 10 g 4-Acetoxy-3,5-dimethoxy-acetophenon in 150 ml CHCl₃ wurden 6,7 g Br₂ in 50 ml CHCl₃ getroffen. Die Reaktionslösung wurde mit wässer. Na-dithionit, NaHCO₃ und H₂O ge-waschen. Farblose Kristalle (10,6 g) vom Schmp. 127–128° (Lit. 51 Schmp. 122–125°). (Gef.: C 45,54; H 4,37. Ber. für C₁₃H₁₂O₃Br (317,14): C 45,44; H 4,13.)

4-Hydroxy-3,5-dimethoxy-α'-brom-acetophenon (42). Eine CHCl₃-Lösung von 18 g 14 in 150 mg Acetophenon, wie oben beschrieben, gemischt. Zu Áthanol kristallisierten 6,7 g schwach gefärbte Kristalle vom Schmp. 118–120°. (Gef.: C 44,00; H 4,25; Br 28,24. Ber. für C₁₃H₁₁O₇Br (275,12): C 43,66; H 4,03; Br 29,05. NMR (10%): 3,94 (6) s, 2 OCH₃, 3,38 (2) s, CH₃, 7,25 (2) s, H₃Ar.)

4-Acetoxy-3,5-dimethoxy-α-(4-formyl-2,6-dimethoxy-phenoxo)-acetophenon (44). Ein Gemisch, bestehend aus 29 g 40, 20 g 13, 20 g K₂CO₃ und 10 g KJ in 250 ml Äthanol wurde zwei Stunden am Rückfluss erhitzt. Aus wäss. Essigsäure kristallisierten 22,5 g 44 vom Schmp. 165–167°. (Gef.: C 59,88; H 5,45. Ber. für C₁₃H₁₇O₁₀ (418,41): C 60,28; H 5,30.)

4-Acetoxy-3,5-dimethoxy-α-(2,6-dimethoxy-4-methyl-phenoxo)-acetophenon (47). Ein Gemisch, bestehend aus 1,0 g 40, 600 mg 10 und 200 mg KJ in 10 ml Äthanol wurde, wie vorangehend beschrieben, umgesetzt. Farblose Kristalle (560 mg) vom Schmp. 112–114° (Áthanol). (Gef.: C 62,01; H 6,05. Ber. für C₁₃H₁₆O₈ (404,42): C 62,37; G 5,98.)

1-(4-Acetoxy-3,5-dimethoxyphenyl)-2-(4-formyl-2,6-dimethoxy-phenoxo)-3-hydroxy-1-propandiol (34). Die Verbindung 43 (12 g) wurde in Tetrahydrofuran bei 50° mit LiAlH₄ (5 g) reduziert (4 Stunden). Die ölige Reaktionsprodukt kristallisierte zum Teil aus Essigester-Hexan; Schmp. (three-Form 34b) nach zweimaligem Umkristallisieren aus dem Lösungsmittelgemisch 154–155°. (Gef.: C 58,33; H 6,43. Ber. für C₂₀H₂₄O₁₀ (448,43): C 58,93; H 5,39.)

2-(4-Formyl-2,6-dimethoxy-phenoxo)-3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanon (46). Eine Lösung von 8 g 45 und 3 g Piperin in 100 ml Áthanol wurde eine Stunde am Rückfluss erhitzt. Farblose Kristalle (5,1 g) vom Schmp. 158–161° (Essigester). (Gef.: C 59,30; H 5,68. Ber. für C₁₅H₁₂O₅ (406,40): C 59,11; H 5,46.)

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(4-hydropxymethyl-2,6-dimethoxy-phenoxo)-1,3-propanedia (34). Die Verbindung 45 (12 g) wurde in Tetrahydrofuran bei 50° mit LiAlH₄ (5 g) reduziert (4 Stunden). Das ölige Reaktionsprodukt kristallisierte zum Teil aus Essigester-Hexan; Schmp. (three-Form 34b) nach zweimaligem Umkristallisieren aus dem Lösungsmittelgemisch 154–155°. (Gef.: C 58,33; H 6,43. Ber. für C₂₀H₂₄O₁₀ (448,43): C 58,53; H 6,39.)

Tetracetat von 34b. Prisment vom Schmp. 104–105° aus Essigester-Hexan. (Gef.: C 57,95; H 5,90. Ber. für C₂₀H₂₄O₁₃ (578,58): C 58,13; H 5,92.) NMR (15 %): 1,91 (3) s, s'- oder γ-OOCOCH₃, 1,94 (3) s, s'- oder γ-OOCOCH₃, 2,03 (3) s, s'-OOCOCH₃, 2,24 (3) s, ArOCOCH₃, 3,72 (6) s, 2 OCH₃, 3,75 (6) s, 2 OCH₃, ca. 4,18 (2) m, H₃, ca. 4,48 (1) m, H₅, 4,97 (2) s, H₆; 6,56 (1) d, H₇, 6,53 (2) s, H₂₅ am Phenoxylrest; 6,97 (2) s, H₂₅ am Phenyl-rest. J (s) = 6,0 Hz.

Dye Mutterlange von 34b wurde nach Abdampfen des Lösungsmittels auf einer Kieselsäule (Silicic acid, Mallinckrodt; Benzol-Essigester 1:2) chromatographiert. Dabei zeigten die Diastereomeren teilweise auf, und zwar in schneller laufendes three-34 und langsamer laufendes ethynylo-34. Nach wiederholtem Umkristallisieren aus wässr.

Acta Chem. Scand. 27 (1973) No. 4
Äthanol wurden insgesamt 1,9 g 3a und 0,55 g 3b erhalten. Die erythro-Form 3a schmilzt bei 178 – 180° (Äthanol-H₂O). (Gef.: C 58,50; H 6,52. Ber. für C₃₅H₆₄O₈: C 58,53; H 6,39.)

Tetraacetat von 3a. Farblose, kugelförmi ge Drusen vom Schmp. 86 – 87° (wassr. Äthanol). (Gef.: C 57,88; H 5,85. Ber. für C₃₅H₆₄O₁₈ (578,58): C 58,13; H 5,92.) NMR (15 %): 1,92 (3 s), γ-OCOCH₃; 2,05 (3 s), α'-OCOCH₃; 2,09 (3 s), α-OCOCH₃; 2,25 (3 s), 4-OCOCH₃; 3,71 (6 s), 2 OCH₃; 3,75 (6 s), 2 OCH₃; ca. 4,32 (2 m), H; ca. 4,57 (1 m), H; 4,96 (2) s, H; 6,03 (1) d, H; 6,50 (2) s, Hₑₑ am Phenoxylrest; 6,61 (2) s, Hₑₑ am Phenylrest. Jₑₑ = 4,9 Hz.

erthro-1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2,6-dimethoxy-4-methyl-phenoxy)-1,3-propan diol (8a). Eine Suspension von 100 mg 3a in 5 ml Essigester-Äthanol 3,2 wurde nach Zusatz von 50 mg 10 % Pd/C hydriert. Aus Essigester-Hexan kristallisierten 54 mg 8a in Form farbloser Nadeln vom Schmp. 147 – 148° (Umwandlung bei 105°). (Gef.: C 60,78; H 6,64. Ber. für C₃₅H₆₄O₈ (394,43): C 60,90; H 6,64.)

Tetraacetat von 8a. Rhomboedrische Stäbchen vom Schmp. 154,5 – 155° aus Äthanol. (Gef.: C 59,87; H 6,41. Ber. für C₃₅H₆₄O₁₁ (520,55): C 59,99; H 6,20.)

threo-1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2,6-dimethoxy-4-methyl-phenoxy)-1,3-propan diol (8b). Eine Suspension von 3,0 g 3b und 100 mg 10 % Pd/C in 40 ml Äthylenglykol-monomethyläther wurde hydriert. Aus Essigester-Hexan kristallisierten 2,45 g 8b in Form farbloser Nadeln vom Schmp. 147 – 148°. Ein Gemisch von 8a und 8b zeigte Schmelzpunktsdepression. (Gef.: C 60,76; H 6,63. Ber. für C₃₅H₆₄O₈ (394,43): C 60,90; H 6,64.)

Tetraacetat von 8b. Farblose Nadeln vom Schmp. 141,5° aus Essigester-Hexan. (Gef.: C 59,89; H 6,32. Ber. für C₃₅H₆₄O₁₁ (520,55): C 59,99; H 6,20.)

threo-1-(3,4,5-Trimethoxyphenyl)-2-(2,6-dimethoxy-4-methyl-phenoxy)-1,3-propan diol (37b). Aus 8b mit Dimethylsulfat-KOH 38 Farblose Kristalle vom Schmp. 79 – 81° aus Essigester-Hexan.

Hydrierung von 46 (in Äthanol mit 10 % Pd/C). Führte zu einem vorwiegend aus 8b und 34b bestehenden Gemisch.

1-(4-Benzyl-3-methoxyphenyl)-2-(4-formyl-2,6-dimethoxy-phenoxy)-1-propanon (48). Zu einer Lösung von 2,0 g 13 und 1,2 g K-tetra-butanolat in 10 ml Dimethylsulfoxid wurden 3,5 g 1-(4-Benzyl-3-methoxyphenyl)-2-brom-1-propanon (43) in einer isomorphen Form vom Schmp. 96 – 97°, feine Nadeln aus Essigester-Hexan, erhalten; für die andere Form war ein Schmp. von 86 – 87° gefunden worden 39 gegeben. Das Gemisch wurde 30 Min unter Schütteln auf 80° erwärmt. Das Keton 48 kristallisierte aus wässrigem Methylyglykol und wurde 2 × aus Essigester-Hexan umgelöst. Feine, farblose Nadeln (1,22 g) vom Schmp. 101 – 102°. (Gef.: C 69,30; H 5,92. Ber. für C₃₅H₆₄O₄, (450,47): C 69,32; H 5,82.)

1-(4-Hydroxy-3-methoxyphenyl)-2-(2,6-dimethoxy-4-methyl-phenoxy)-1-propanon (24). Eine Lösung von 0,90 g 45 in 50 ml Essigester (3,7) wurde in Gegenwart von 0,35 g 10 % Pd/C hydriert. Das Reaktionsprodukt wurde durch präparative Dünnschichtchromatographie gereinigt (Kieselgel HF 254, Merck; Aceton-Hexan 1:1). Isomerengemisch, 626 mg, ca. 65 % threo- und 35 % erythro-Form.

Ein Teil des Reaktionsproduktes wurde auf analytischen Dünnschichtplatten (Kieselgel HF 254, Merck, Aceton-Hexan 1:2, 4 entwickelt) in langsamer laufende threo-Form und in schneller laufende erythro-Form getrennt. Beide Formen sind gaschromatographisch (Acetate) einheitliche, zähe farblose Öle; sie wurden durch die Diacetate charakterisiert.

Diacetat von 24a. Zähles, farbloses Öl. NMR (5 %): 1,29 (3 d), H₃; 1,72 (3 s), C-OCOCH₃; 2,28 (3 s), Ar-OCOCH₃; 2,30 (3 s), Ar-CH₃; 3,76 (6 s), 2 OCH₃; 3,80 (3 s), OCH₃; 4,41 (1) d, H₃; 5,90 (1) d, H₃; 6,35 (2) Hₑₑ am Phenoxylrest; ca. 6,90 (3) m, Hₑₑ am Phenylrest. Jₑₑ = 3,6 Hz; Jₑₑ = 6,5 Hz.

Diacetat von 24b. Farblose Prismen vom Schmp. 104 – 105° aus Essigester-Hexan (Exakte Massenbestimmung am Moleküllon. Gef.: M = 432,1765. Ber. für C₃₅H₆₄O₈: M = 432,1784. NMR (3 %): 1,13 (3 d), H₃; 1,95 (3 s), C-OCOCH₃; 2,28 (6 s), Ar-CH₃ und Ar-OCOCH₃; 3,78 (6 s), 2 OCH₃; 3,81 (3 s), OCH₃; 4,42 (1) d, H₃; 5,94 (1) d, H₃; 6,38 (2) s, Hₑₑ am Phenoxylrest; ca. 7,01 (3) m, Hₑₑ am Phenylrest. Jₑₑ = 0,6 Hz, Jₑₑ = 6,5 Hz. Für die Protonen des α-Acetoxyresta von 1-(4-Acetoxy-3,5-dimethoxyphenyl)-2-(2,6-dimethoxy-4-trans-propenylyphenoxy)-propanon wurden δ-Werte von 1,28 (erythro-
Form) bzw. 1,13 (three-Form) beobachtet.14

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(4-hydroxymethyl-2,6-dimethoxyphenoxy)-1-äthanol (33). Aus 44 (567 mg) mit LiAlH\textsubscript{4} (0,8 g) in THF (1 Stunde Rückfluss). Farblose Kristalle (396 mg) vom Schmp. 132 – 133° (Essigester-Hexan). (Gef.: C 59,86; H 6,41. Ber. für C\textsubscript{13}H\textsubscript{14}O\textsubscript{4} (380,38): C 60,00; H 6,36.)

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2,5-dimethoxy-4-methyl-phenoxy)-1-äthanol (32). Aus 215 mg 33, suspendiert in 50 ml Äthanol, wurden durch Hydrierung unter Zusatz von 40 mg 10 % Pd/C 122,5 mg 32 in Form feiner, farbloser Nadeln vom Schmp. 97 – 98° (Essigester-Hexan) erhalten. (Gef.: C 62,81; H 6,61. Ber. für C\textsubscript{13}H\textsubscript{14}O\textsubscript{4} (364,38): C 62,62; H 6,64.)

2,09 (3 s, C – COCH\textsubscript{3}; 2,30 (6 s, Ar – CH\textsubscript{3} und Ar – COCH\textsubscript{3}; 3,69 (12 s, 4 OCH\textsubscript{3}; 4,20 (2 d, H\textsubscript{2}; 6,00 (1 t, H\textsubscript{2}; 6,36 (2 s, H\textsubscript{ar} am Phenoxyrest; 6,59 (2 s, H\textsubscript{ar} am Phenylrest. J = 6,0 Hz.

Die Verbindung 32 wurde auch durch Reduktion von 47 mit LiAlH\textsubscript{4} in THF in 70-proz. Ausbeute erhalten.

Protonenresonanzspektren: 60 MHz; Tetramethyilsilan als innerer Standard; in CDCl\textsubscript{3}; δ-Werte.

Die Elementaranalysen wurden unter Leitung des Herrn Prof. Dr. J. Zak am Mikroanalytischen Laboratorium am Inst. f. physik. Chemie der Univ. Wien ausgeführt.

LITERATUR

23. Richtzenhain, H. Ber. 77 (1944) 409.
24. Boedecker, F. und Volk, H. Ber. 64 (1931) 61.

Acta Chem. Scand. 27 (1973) No. 4
27. von Waeg, A. *Ber.* 77 (1944) 85.