
Received December 5, 1972.

The Crystal and Molecular Structure of Methyl 3,6-Anhydro-α-D-glucopyranoside

BÖRJE LINDBERG, a BENGT LINDBERG b and SIGFRID SVENSSON b

aInstitute of Inorganic and Physical Chemistry, University of Stockholm, S-104 05 Stockholm, Sweden. bInstitute of Organic Chemistry, University of Stockholm, Sandagatan 2, S-113 27 Stockholm, Sweden

The pyranose rings in methyl 3,6-anhydro-α-D-glucopyranoside (I) and 1,6-anhydro-β-D-glucopyranose (II) are forced into the C_4 conformation and should be considerably distorted as a result of the strain caused by the cis-fused 5-membered ring. The distance between the axial oxygen atoms, O-2 and O-4, should therefore be longer in (II) and shorter in (I) than in a corresponding unstrained system. A recent X-ray diffraction study of II demonstrated, inter alia, that the distance between O-2 and O-4 was 3.30 Å. A similar study of methyl 3,6-anhydro-α-D-galactopyranoside demonstrated the distortion of the pyranose ring.

That the distance between O-2 and O-4 in I is exceptionally short was indicated by two observations. Firstly the β-anomer of I, which should have a similar structure, showed unexpectedly high mobilities on paper electrophoresis in borate and sulphonated phenyl boronic acid buffers. The complex formation with boron, which requires an O–O distance of approximately 2.4 Å, can only take place between the axially disposed oxygen atoms O-2 and O-4.

Secondly Schwarz and Totty observed that I was a considerably stronger acid ($K_a = 8.210 \times 10^{-3}$) than, e.g., the unstrained muscle-inositol ($K_a = 7.10 \times 10^{-4}$). 1,6-Anhydro-β-D-glucopyranose is even weaker ($K_a = 2.96 \times 10^{-4}$). These results were explained in terms of a hydrogen bridge between O-2 and O-4 in the corresponding anions. The distance between these atoms in III is about 2.89 Å and should consequently be considerably smaller in I.

We now report an X-ray diffraction study of I. The compound crystallized in space group $P2_12_12_1$; $a = 8.210$ (1), $b = 17.764$ (3), $c = 5.555$ (1), $Z = 4$. The crystals decomposed on X-ray irradiation. From equi-inclination Weissenberg photographs, taken using CuKα radiation, 335 data were collected. The phase determinations were carried out by a computerized application

Fig. 1. The molecular structure of methyl 3,6-anhydro-α-D-glucopyranoside.
of the X-ray diffraction investigation will be published elsewhere.

As expected, the distance between O-2 and O-4 is short, 2.76 Å, in accordance with the observed chemical properties. Furthermore, although the hydrogens have not been located, the packing of the molecules would suggest an intramolecular hydrogen bond between O-2 and O-4 in the crystalline state.

Acknowledgement. We are grateful to Dr. J. C. P. Schwarz, Edinburgh, for information on unpublished results. We are also indebted to Professor Peder Kierkegaard for his interest. The investigation has been financially supported by the Tri-Centennial Fund of the Bank of Sweden and the Swedish Natural Science Research Council.

Received December 29, 1972.

Steroselective Cyclopropane Ring Opening Reactions of Nortricyclene Hydrocarbons in Formic Acid I. Reactions of Nortricyclene, Norborne and Tricyclicene

JAAKKO PAASIVIRTA

Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland

During the study of the stereochernistry of the nortricyclene compounds and their cyclopropane ring opening products in our laboratory, the course of the reactions of nortricyclene hydrocarbons in formic acid has been examined. The protonation of the cyclopropane ring in this system apparently leads to the same cationic intermediate as those found in the SN2 solvolyses and E1 eliminations of 2-norbornyl derivatives. The aim in the present series is to connect kinetic data with the intermediate and final product analysis.

The addition of formic acid to nortricyclene (I) or norborne (III) has norbornyl-2-exo-formate (II) as the sole main product. This was confirmed in the present study. The hydrocarbon III from I, or I from III, occurred as a minor side product of the reaction, leading to the following overall picture:

\[
\begin{align*}
\text{HCOOH} & \quad \rightleftharpoons \quad \text{OCCH} \quad \rightleftharpoons \quad \text{HCOOH} \\
\text{I} & \quad \rightleftharpoons \quad \text{II} \quad \rightleftharpoons \quad \text{III}
\end{align*}
\]

Only one ester product, isobornyl formate (V), was found from tricyclicene (IV); the only hydrocarbon byproduct present

Acta Chem. Scand. 27 (1973) No. 1