Lanthanide Induced Chemical Shifts in 5,5-Dimethyl-1,3,2-dioxaphosphorinan-2-ones with Respect to the Conformational Preference of the 2-Substituent

A. J. DALE

Chemical Institute, University of Bergen, N-5000 Bergen, Norway

Although exceptions occur,¹ the majority of work considering configuration/conformation in substituted or unsubstituted 1,3,2-dioxaphosphorinan-2-ones shows that the geometrical arrangement which gives the thermodynamically most stable molecule, is a chair-like structure, presumably flattened at the phosphorus end of the ring.² The stereochemistry around the phosphorus atom, that is, whether the 2-substituent is axially or equatorially oriented, is, however, open to question. In cases where crystal structures have been determined, the P=O bond is uniformly oriented equatorially. This need not be the situation in solution. Generally, an equilibrium between two conformers, having the P=O bond axial and equatorial, respectively, should be considered, i.e., for 5,5-dimethyl-1,3,2-dioxaphosphorinan-2-ones:

\[
\begin{align*}
\Delta \nu_l &= K(3 \cos^2 \phi_l - 1) R_1^{-3} \\
\end{align*}
\]

where \(K \) is a constant, \(\Delta \nu_l \) is the chemical shift induced in proton \(H_l \) on complexation of the substrate with the shift reagent, \(R_1 \) the distance between the proton \(H_l \) and the lanthanide in the complex, and \(\phi_l \) the angle between the vector \(R_1 \) and the principal axis of the complex.

According to eqn. 1, the chemical shifts induced in 1 on complexation at the phosphoryl-oxygen will depend on the relative contributions from conformers 1a and 1b. Thus there is the possibility of obtaining information with respect to the axial/equatorial preference of the P=O bond in this type of compounds, as proposed by Yee and Bentrude in an article reporting the use of Eu(dpm) for simplifying the NMR spectrum of trans-2-methyl-5-tert-butyl-1,3,2-dioxaphosphorinan-2-one.³

On this background, the derivatives listed in Table 1 have been prepared, and their chemical shifts, \(\nu_l \), measured as a function of mol fraction, \(x \), of the shift reagent Eu(fod)₃.⁴ In all experiments the substrate concentration was kept constant equal to 0.100 M.

The effect of adding Eu(fod)₃ to CCl₄ solutions of compounds 1a and 1d is illustrated in Fig. 1. As for the other derivatives studied, there is a linear \(\nu/x \)-dependence in the low concentration range of the shift reagent. The \(\nu/x \)-slope in this region of \(x \) can therefore be taken as a quantitative measure for the changes in chemical shifts caused by complexation with Eu(fod)₃. These slopes, the \(k \)-values, are listed in Table 1, together with the POCH coupling constants.

It is seen from Table 1 (but more clearly from diagrams) that derivatives 1a—1e generate qualitatively very similar \(\nu/x \)-
Table 1. Eu(fod)_2 NMR data for compounds Ia-Id and II.

| Compound | Solvent | \(k \) (Hz/mol fraction shift reagent) \((\text{CH}_3)_A \) | \((\text{CH}_3)_B \) | \(H_A \) | \(H_B \) | \(r \) | \(J(\text{POCH}_A) \) \(x=0 \) | \(J(\text{POCH}_A) \) \(x=1 \) | \(J(\text{POCH}_B) \) \(x=0 \) | \(J(\text{POCH}_B) \) \(x=1 \) |
|----------|---------|----------------|----------------|------|------|-------|--------------|--------------|--------------|--------------|--------------|
| R=CH₃ | CCl₄ | 85 | 155 | 205 | 435 | 2.1 | 17 | 20 | 6 | 3 |
| Ia | CDCl₃ | 55 | 115 | 145 | 295 | 2.0 | 15 | 19 | 8 | 3 |
| R=CH₄Ph | CCl₄ | 70 | 110 | 150 | 310 | 2.1 | 17 | 20 | 5 | 2 |
| Ib | CDCl₃ | 50 | 100 | 130 | 250 | 1.9 | 15 | 19 | 7 | 3 |
| R=Ph | CCl₄ | 110 | 190 | 220 | 600 | 2.7 | 17 | 20 | 6 | 3 |
| Ic | CDCl₃ | 35 | 135 | 145 | 315 | 2.2 | 13 | 19 | 10 | 5 |
| R=Cl | CCl₄ | 110 | 160 | 230 | 260 | 1.2 | 27 | 27 | 3 | 3 |
| Id | CDCl₃ | 95 | 135 | 160 | 210 | 1.3 | 27 | 27 | 3 | 2 |
| II | CCl₄ | 160 | 230 | 340 | 770 | 2.3 |

\(a \) A and B denote, respectively, the highfield and lowfield signals.

\(b \) \(x=0.30 \).

\(c \) \(x=0.22 \).

Fig. 1. \(\nu/\text{x} \)-plots (CCl₄) for compounds Ia, Id, and II. a: high field methyl group. b: low field methyl group. c: high field methylene proton. d: low field methylene proton. Chemical shifts (Hz) are downfield from internal TMS, and were measured by means of a JEOL JNM-C-60H spectrometer operating at 60 MHz.

plots. Tentatively this would mean that the type of contributing conformers are the same for these compounds. Considering chair forms only, eqn. 1 applied to a molecular model shows that a much greater differentiation of the shifts induced in the methylene protons on Eu(fod)$_3$ complexation is to be expected when the P=O bond is oriented axially as compared to the alternative equatorial orientation. More quantitatively, differentiation can be expressed by the ratio of the k-values for the methylene protons, the r-value, Table 1. On this basis, the obtained results indicate that Iax is the main contributing conformer in derivatives 1a — Ic. Additional support for this conclusion is obtained when observing the Eu(fod)$_3$ induced shifts in 1,2-dimethyl-1,3-propanediol cyclic sulfite (II), a compound for which the axial preference of the SO-γ-oxygen seems to be established. The r/s-plot obtained for II, Fig. 1, is qualitatively similar to the plots for 1a — Ic, an observation which provides strong evidence for analogous conformation in these two classes of compounds.

The postulated axial preference of the P=O bond for 1a — Ic is also consistent with the relative large difference between the axial POCH coupling constants, indicating the dominance of either Iax or Ieq. When changing the solvent from CCl$_4$ to CDCl$_3$, there is generally a decrease in the r-value, indicating a displacement of the conformational equilibrium towards Ieq. Such a change in the conformer ratio should be reflected in a convergence of the POCH couplings, an expectation which is born out, Table 1.

A comparison of the POCH coupling constants for compounds 1a — Ic at $x=0$ and $x=1$ shows that the addition of Eu(fod)$_3$ causes the difference between them to increase. This trend is observed in CCl$_4$ as well as in CDCl$_3$, and must be interpreted in terms of a displacement of the conformational equilibrium towards Iax. This interpretation is strongly supported by the fact that the POCH coupling constant for a 0.1 M solution of (CH$_3$)$_2$P=O in CCl$_4$ is virtually unaffected by the presence of Eu(fod)$_3$.

The change in the coupling constants above can therefore not be explained as a result of a contact contribution caused by complexation. Regardless of this somewhat unfavourable result, that the addition of Eu(fod)$_3$ to some extent distorts the equilibrium under investigation, the conclusions considering the conformational preference of the P=O bond should still be valid. The ability of Eu(fod)$_3$ to influence the conformational equilibrium has very recently been demonstrated for the trans isomers of 2-R-5-tert-butyl-1,3,2-dioxaphosphorinan-2-one (R = Ph, CH$_3$)$_{14}$.

The very different POCH couplings found for Ic indicate the presence of a single conformer. This conclusion is further supported by the invariance of these coupling constants on changing the solvent from CCl$_4$ to CDCl$_3$ or on adding Eu(fod)$_3$ in either of these solvents. On the other hand, the r/s-curves in CCl$_4$ show that the contribution from Iax cannot be significant. Consequently, as far as only chair forms are considered, the conformation of Ic must be a chair with the P=O bond equatorial.

8. For references see Corio, P. L., Smith, S. L. and Wasson, J. R. Anal. Chem. 44 (1972) 413 R.

Received July 14, 1972.