Tentative Assignment of Fundamental Vibrations of Thio- and Selenocarboxylates IV. Bis (N,N-dimethyldithiocarbamato)-nickel (II) and Bis (N,N-dimethyldiselenocarbamato)-nickel (II)

KAI ARNE JENSEN,^a BRITTA MYNSTER DAHL,^a PER HALFDAN NIELSEN^a and GUNNER BORCH^b

^a Institute of General and Organic Chemistry, University of Copenhagen, The H. C. Ørsted Institute, DK-2100 Copenhagen, and ^bChemistry Department A, The Technical University of Denmark, DK-2800 Lyngby, Denmark

The infrared spectra in the range $40-4000~{\rm cm^{-1}}$ of bis $(N,N-{\rm dimethyldithiocarbamato})$ nickel(II), and bis $(N,N-{\rm dimethyldise})$ leno-carbamato)nickel(II), and the corresponding perdeuterated compounds are reported. For these compounds, the frequencies and description in symmetry coordinates of the normal vibrations of species B_{1u} , B_{2u} , and B_{3u} have been calculated using a 31-parameter force field in the generalised valence force field (GVFF) approximation. The force fields were derived by adaption of those of the free ligands and those of analogous complexes. A complete tentative assignment of the fundamentals of species B_{1u} , B_{2u} , and B_{3u} is presented for the four complexes and previous assignments are discussed.

The first normal coordinate analysis of metal complex compounds containing dithio- and diselenocarbamate ligands was reported in 1963 by Nakamoto et al.¹ The vibrational fundamentals of bis(dithiocarbamato)-platinum(II) and the corresponding perdeuterated complex were calculated using a Urey-Bradley force field. However, the procedure was approximative, since the calculations were performed adopting a 1:1 model, i.e. the complex was treated as if it consisted only of one ligand connected to the central metal atom. Furthermore, all out-of-plane vibrations were neglected and only the eleven in-plane vibrations were compared with the nine experimentally found frequencies. Recently, exploratory calculations have been published for bis-(dimethyldithiocarbamato)nickel(II) (DDTC-Ni) and the selenium analogue (DDSC-Ni)² using 1:1 models, but owing mainly to the lack of reliable experimental information the conclusions are still far from definitive. A preliminary account of the results obtained for metal complexes containing the

Table 1. Observed infrared spectra a of bis(dimethyldithiocarbamato)nickel(II), bis-(dimethyldiselenocarbamato)nickel(II) and the deuterated compounds in KBr (400 – 4000 cm $^{-1}$) and polyethylene (40 – 400 cm $^{-1}$) with a tentative assignment of the fundamentals.

 $[(CH_3)_2NCSS]_2Ni [(CD_3)_2NCSS]_2Ni [(CH_3)_2NCSeSe]_2Ni [(CD_3)_2NCSeSe]_2Ni Assignment b$

3003vw 2260vw 2998vw 2253vw 2950w 2186vw 2950w 2174vw 2910m 2233w 2908m 2219w 2221wsh 2141m 2131m 2104w 2093w 2260m 2260m 2260m 2093w 2276w 1949vw 2774w 1939w 2117w 1916vw 2031vw 1760w 1967w 1639w 1626w 1788w 1765w 1717w 1736w 1553vs 1500vs 1555vs 1504vs 1446m 1044m 1044m 1394sc 1064s 1401sc 1033w 1394sc 1064s 1401sc 1033w 1394sc 1064s 1401sc 1059s 1367w 1208msh 1168w 1225s 1226m 1201s 1168w 1208msh 1168w 1098wsh 1098wsh 1098wsh 1054m 824w 1046m 815w 1054m 824w 1046m 815w 1013w 977vs 1144vs 965vs 1103w 1054m 824w 1046m 815w 975vs 984vs 892m 883m 944vw 1113m 947msh 927wsh 926wsh 894vw 539w 535vw 490vwc 549w 545w 498vw 490vwc 444m 414m 328s 328s 328s 414m 397s 378m 347m 388s 363m 298wc 298wc 298wc 301m 286m 204m 204m 204m 273m 245m 179m 174vw 144vw 144vw 144vw 144vw 179m 176m 144vw 144vw 144vw 179m 176m 144vw 1	
2950w 2186vw 2950w 2174vw 2910m 2233w 2908m 2219w 2221wsh 22207vwsh 2213m 2141m 2131m 2993w 2849w 2061m 2848w 2053m 2776w 1949vw 2774w 1939w 2117w 1916vw 2031vw 1760w 1967w 1639w 1626w 1936w 1583vw 1880vw 1765w 1717w 1736w 1553vs 1500vs 1555vs 1504vs 1446m 1048m 1440m 1044m 1394sc 1064s 1401sc 1059s 1367w 1246s 1225s 1226m 1201s 1150vsc 790w 1144vs 765w 1098wsh 1168w 1098wsh 1054m 824w 1046m 815w 1013w 995vw 965vs 1013w 995vw 892m 883m 944vw 1113m <td></td>	
2910m 2233w 2908m 2219w 2221wsh 2221vsh 2207vwsh 2111m 2131m 2104w 2093w 2093w 2093w 2776w 1949vw 2774w 1939w 2117w 1916vw 2031vw 1760w 1626w 1936w 1583vw 1880vw 1788w 1765w 1717w 1736w 1553vs 1500vs 1555vs 1504vs 1446m 1044m 1446m 1044m 1394sc 1064s 1401sc 1059s 1367w 1208s 1301vw 1208ssh 1168w 1225s 1226m 1201s 1150vsc 790w 1144vs 765w 1301vw 1298vw 1208msh 1168w 1098wsh 1098wsh 1093wsh 1054m 824w 1046m 815w 975vs 984vs 892m 883m 107m 947msh 927wsh 894vw 876vw 1113m 1107m 947msh 927wsh 880vw 545w 498vw 490vwc 549w 545w 498vw 490vwc 545w 498vw 490vwc 545w 498vw 490vwc 545w 498vw 490vwc 545w 498wc 298wc 298wc	$v_{12}(B_{2u}), v_{20}(B_{3u})$
2221wsh	$v_{12}(B_{2u}), v_{20}(B_{3u}) = v_{1}(B_{1u})$
2141m	$V_1(D_{1u})$
2849w 2061m 2848w 2053m 2053m 2776w 1949vw 2774w 1939w 2117w 1916vw 2031vw 1760w 1626w 1936w 1583vw 1880vw 17765w 1717w 1736w 1553vs 1500vs 1555vs 1504vs 1446m 1044m 1394sc 1064s 1401sc 1059s 1367w 1298vw 1208msh 1168w 1208msh 1168w 1098wsh 1168w 1098wsh 1054m 824w 1046m 815w 975vs 984vs 892m 883m 1107m 947msh 927wsh 926wsh 894vw 820vw 570w 539w 535vw 490vwc 444m 414m 397s 376m 376m 298wc 298wc 301m 286m 294m 273m 245m 272m 246m	
2849w 2061m 2848w 2053m 2776w 1949vw 2774w 1939w 2117w 1916vw 2031vw 1760w 1936w 1639w 1626w 1936w 1583vw 1880vw 1788w 1765w 1717w 1736w 1555vs 1504vs 1446m 1048m 1446m 1044m 1394sc 1064s 1401sc 1059s 1367w 1246s 1225s 1226m 1201s 1150vsc 790w 1144vs 765w 1298vw 1298vw 1298vw 1208msh 1168w 1093wsh 1150vsc 97vs 1144vs 965vs 1103w 1080vwsh 1013w 995vw 975vs 984vs 892m 883m 944vw 1113m 1107m 947msh 926wsh 894vw 860vw 870m 820vw 539w 535vw 490vwc	
2776w	$v_2(B_{1u}), v_{21}(B_{3u})$
2117w	$r_2(D_{1u}), r_{21}(D_{3u})$
1967w	
1936w	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1553vs	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_3(B_{1u})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_4(B_{1u}), v_{13}(B_{2u}),$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_{4}(B_{1u}), v_{13}(B_{2u}), v_{22}(B_{3u})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_{5}(B_{1u})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_{5}(B_{1u}) \\ v_{23}(B_{3u})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\nu_{23}(D_{3u})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_{24}(B_{3u})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_{24}(B_{3u}) = v_{6}(B_{1u})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\nu_6(D_{1u})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_{14}(B_{2u})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14(124)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_{25}(B_{3u})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25(234)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$v_{-}(R_{-})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{aligned} v_{24}(B_{3u}) \ v_{7}(B_{1u}) \end{aligned}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7(214)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
870m 820vw 766vw 570w 539w 535vw 490vw² 549w 545w 498vw 490vw² 444m 414m 328s 328s 414m 397s 378m 347m 388s 363m 298w² 298w² 376m 376m 298w² 298w² 301m 286m 204m 204m 273m 245m 272m 246m	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
549w 545w 498vw 490vw² 444m 414m 328s 328s 414m 397s 378m 347m 388s 363m 298w² 298w² 376m 376m 298w² 298w² 301m 286m 204m 204m 273m 245m 272m 246m	$v_{s}(B_{1u})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_{15}(B_{2u})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_9(B_{1u})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$v_{27}(B_{3u})$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$v_{10}(B_{1u})$
301m 286m 204m 204m 273m 245m 272m 246m	$v_{28}(B_{3u})$
273m 245m 272m 246m	$v_{11}(B_{1u})$
	$v_{16}(B_{2u})$
14500 144VW 144VW	$v_{17}(B_{2u})$
104wbr 100wbr 96wbr 96wbr	. 17 (- ZIL)
90m 85m 78m 74m	$v_{ao}(B_{3\mu})$
TANA	. 30 (~ 311)

^a Abbreviations used: vs=very strong, s=strong, m=medium, w=weak, vw=very weak,

br=broad, and sh=shoulder.

b The numbering of the fundamentals refer to the undeuterated compound. The counterparts. of the deuterated compounds are the bands, which according to the normal coordinate analysis. correspond most closely in description.

^c Multiple assigned bands.

diethyldithiocarbamate ligand was given a short time ago by Pilipenko and Mel'nikova.³

The purpose of the present paper is to present a complete assignment of the infrared-active fundamentals of species B_{1u} , B_{2u} , and B_{3u} of the nickel complexes DDTC-Ni and DDSC-Ni. For this purpose a full normal coordinate analysis was performed using the actual 2:1 model of the complexes. A major part of the force fields were transferred from those derived previously for the free ligands, DDTC and DDSC. 4,5

The infrared data for DDTC-Ni, DDSC-Ni and the perdeuterated complexes and a tentative assignment of the fundamentals of species B_{1u} , B_{2u} , and B_{3u} are given in Table 1. A graphical representation of the infrared spectra of the complexes in the region below 1330 cm⁻¹ is shown in Fig. 1. In the upper

Fig. 1. The infrared spectra of bis(dimethyldithiocarbamato)nickel(II), its selenium analogue, and the perdeuterated compounds in the range $60-1333~{\rm cm}^{-1}$. The numbering of the bands refers to the assigned fundamentals discussed in the text.

part the superimposed spectra of DDTC-Ni and DDSC-Ni are drawn with a full and a dashed line, respectively. In the lower part of Fig. 1 the superimposed spectra of the deuterated counterparts are shown in the same way. When arranged in this way it is immediately apparent that a number of infrared absorptions by virtue of their position, shape, and intensity appear to have common origins in the four compounds. In fact, it has often been convenient to consider the infrared spectrum of a selenium compound as DDSC-Ni to be derived from the infrared spectrum of the corresponding sulfur compound (here DDTC-Ni) by "selenation", i.e. the replacement of sulfur with selenium. However, though it is empirically useful to say that, e.g., the absorption band of DDTC-Ni, numbered 26 in Fig. 1, is "displaced from 975 cm⁻¹ to 892 cm⁻¹

on selenation", it is (1) not known to which extent this shift is due to changes in bond lengths, interbond angles, masses, or force constants when sulfur is replaced by selenium, and (2) also not known to which extent this absorption band can be described by similar symmetry coordinates and potential energy distributions in DDTC-Ni and DDSC-Ni. This problem will be discussed later on the basis of the results obtained from the vibrational analyses.

EXPERIMENTAL

The experimental details of obtaining the spectra and performing the normal coordinate analyses were described in part I of this series. We thank Dr. Kjeld Rasmussen for providing us with the far-infrared data.

The complex compounds were prepared by published methods. Their elemental compositions were checked by analysis. All spectra were recorded several times and with different concentrations of the complexes in the KBr-discs in order to get a reliable determination of the absorption maxima.

NORMAL COORDINATE ANALYSIS

The nickel(II) complexes in the full 2:1 model contain a total of 25 atoms assumed to be arranged according to the point group D_{2h} with the molecule in the XZ-plane and the ligands along the Z-axis. The 69 normal modes of vibration can consequently be described by the representation $11A_g + 6A_u + 5B_{1g} + 11B_{1u} + 10B_{2g} + 8B_{2u} + 7B_{3g} + 11B_{3u}$. However, only the 30 normal vibrations of the species B_{1u} , B_{2u} , and B_{3u} are infrared active, corresponding to the species A_1 , B_2 , and B_1 of the free ligands, 4,5 respectively. The present work is confined to the treatment of these three species.

In the absence of infrared or Raman polarisation data, there was, a priori, no way of distinguishing the fundamentals of the three species in question. Therefore, the following method was adopted. First, by comparing the spectra of the nickel(II) complexes to those of the corresponding free ligands, it was noted that many absorption bands were almost unchanged in position, shape, and strength. As a first approximation it was assumed that these bands corresponded to those ligand vibrations that were least perturbed by complex formation. A normal coordinate calculation was then carried out using the force fields previously derived for the free ligands 4,5 combined with those described for related complex compounds. By varying the force field it proved possible to obtain agreement between most of the experimental and calculated frequencies, and a revised assignment of the fundamentals was obtained.

In the process of developing the final force field and assigning the fundamentals, several problems were encountered some of which will be mentioned here. The assignment of the bands in the CH/CD stretching and the CH₃/CD₃ deformation regions cannot be taken as decisive, and changes will undoubtedly prove necessary as the available evidence increases. Also, the assignments of the four rather closely spaced bands in the region $300-450~\rm cm^{-1}$ in DDTC-Ni and DDSC-Ni may have to be interchanged. The essential problem in assigning these bands is that only three counterparts are observed in the corresponding deuterated complex compounds. Accordingly, it has been necessary to assume

that two fundamentals are superimposed in the deuterated complexes which, however, increases the number of possible assignments of this region and leaves the results somewhat arbitrary.

The bond distances and the interbond angles have been assumed unchanged from those used for the free ligands ^{4,5} as regards the (CH₃)₂NC group. The remaining bond distances and angles, including those of the dithio- or diseleno-carboxylate groups and around the nickel atom, were assumed identical with those estimated by Durgaprasad *et al.*² on the basis of X-ray determinations on the diethyl analogues. The internal coordinates are shown in Fig. 2, and

Fig. 2. Internal coordinates for bis(dimethyldithiocarbamato)nickel(II), used for the selenium substituted analogue. Additional coordinates are: torsions of methyl groups τ_1 and τ_2 , out-of-plane NCSS wagging, ω_2 and out-of-plane (CH₃)₂N wagging, ω_1 . Bending around the $S \cdots S$ line, b_1 , has been defined by simultaneous torsion around the two CS bonds. Bending of the two ligands around a line $(\times \cdots \times)$ through the nickel atom as indicated on the figure, b2, has been defined by simultaneous torsion around the four NiS bonds. The internal coordinates of the other ligand are identical with those shown on the figure, except that each coordinate obtained by reflection in the mirror plane (through the line $\times \cdots \times$) has been marked with a prime.

express the changes in distances and angles. The symmetry coordinates listed in Table 2 were constructed from the internal coordinates in the usual way (cf. Ref. 4). Normalisation of the symmetry coordinates and removal of the redundant ones were made automatically by the program used in the calculations.

The final force field is given in Table 3 and includes 31 force constants which are only seven more than those necessary to calculate the vibrational spectrum of the ligands. Six of these are simple stretching and bending force constants applying to the new bonds with the nickel atom. The additional force constant was necessary to adjust the frequency of the vibration in which the two ligands rock in-plane around the nickel atom (ϱ Lig). It was chosen as an interaction constant between deformation of angles which are not contiguous (δ and μ) as the simplest solution even though it is physically not the most probable.

 $Table\ 2.$ Symmetry coordinates for bis(dimethyldithiocarbamato)nickel(II).

Symmetry coordinate (unnormalized)	Symbol	Description
Species B_{1u}		
$S_1 = 2r_1 - r_2 - r_3 + 2r_4 - r_5 - r_6 -$	OTT	A CVT
$2r_1' - r_2' - r_3' + 2r_4' - r_5' - r_6')$	$v_{ m as}{ m CH}$	Asym. CH stretch
$S_2 = r_1 + r_2 + r_3 + r_4 + r_5 + r_6 - r_6$	" CH	Sym CU stratch
$(r_1' + r_2' + r_3' + r_4' + r_5' + r_6')$ $(r_3' = P_1 + P_2 - (P_1' + P_2'))$	$egin{aligned} v_{\mathbf{s}}\mathrm{CH} \ v_{\mathbf{s}}\mathrm{CNC} \end{aligned}$	Sym. CH stretch Sym. CNC stretch
$S_4 = R - R'$	v_{SONO}	CN stretch
$S_5 = D_1 + D_2 - (D_1' + D_2')$	$v_{\rm s}{ m CSS}$	Sym. CSS stretch
$S_8 = 2\alpha_1 - \alpha_2 - \alpha_3 + 2\alpha_4 - \alpha_5 - \alpha_6 - \alpha_6$	· ·	
$S_6 = 2\alpha_1 - \alpha_2 - \alpha_3 + 2\alpha_4 - \alpha_5 - \alpha_6 - 2\alpha_1' - \alpha_2' - \alpha_3' + 2\alpha_4' - \alpha_5' - \alpha_6')$	$\delta_{ m as}{ m CH}_{ m s}$	Asym. CH ₃ deformation
$\alpha_1 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 - \alpha_7$		
$\alpha_{1}' + \alpha_{2}' + \alpha_{3}' + \alpha_{4}' + \alpha_{5}' + \alpha_{6}'$	$oldsymbol{\delta_{\mathbf{s}}}\mathrm{CH}_{\scriptscriptstyle 3}$	Sym. CH ₃ deformation
$S_8 = 2\beta_1 - \beta_2 - \beta_3 + 2\beta_4 - \beta_5 - \beta_6 - \beta_6$	CIT	In plane CIII reals
$(2\beta_{1}' - \beta_{2}' - \beta_{3}' + 2\beta_{4}' - \beta_{5}' - \beta_{6}')$	$ ho \mathrm{CH}_3$	In-plane CH ₃ rock
$S_9 = \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 - \beta_1 + \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 - \beta_6 + \beta_6 $	_	Redundant
$P_1 + P_2 + P_3 + P_4 + P_5 + P_6 $ $S_{11} = \delta_0 + \delta_0 - (\delta_1' + \delta_0')$	$\delta_{\rm CSS}$	CSS deformation
$\begin{aligned} \beta_1 &= \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 \\ \beta_{10} &= \delta_1 + \delta_2 - (\delta_1' + \delta_2') \\ \beta_{11} &= \delta_3 - \delta_3' \end{aligned}$	_	Redundant
$S_{12} = \lambda_1 + \lambda_2 - (\lambda_1' + \lambda_2')$	$\delta_{ m s}{ m CSNi}$	Sym. CSNi deformation
$S_{12} = \lambda_1 + \lambda_2 - (\lambda_1' + \lambda_2')$ $S_{13} = \pi - \pi'$	$\delta SNiS$	SNiS deformation
$S_{14} = \gamma_1 + \gamma_2 - (\gamma_1' + \gamma_2')$	$\delta \mathrm{CNC}$	(CH ₃) ₂ N deformation
$S_{15} = \gamma_3 - \gamma_3'$ $S_{16} = L_1 + L_2 - (L_1' + L_2')$		Redundant
$S_{16} = L_1 + L_2 - (L_1' + L_2')$	$ u_{ m s}{ m NiS}$	Sym. NiS stretch
Species B_{zu} .		
$S_1 = r_2 - r_3 + r_5 - r_6 + (r_2' - r_3' + r_5' - r_6')$	$\nu \mathrm{CH}$	CH stretch
$S_2 = \alpha_2 - \alpha_2 + \alpha_2 - \alpha_3 + (\alpha_2' - \alpha_2' + \alpha_2' - \alpha_2')$	$\delta \mathrm{CH}_{3}$	CH ₃ deformation
$S_{3} = \beta_{3} - \beta_{3} + \beta_{5} - \beta_{6} + (\beta_{2}' - \beta_{3}' + \beta_{5}' - \beta_{4}')$ $S_{4} = \tau_{1} + \tau_{2} + \tau_{1}' + \tau_{2}'$	$ ho \mathrm{CH_{3}}^{\circ}$	CH ₃ rock
$S_4 = \tau_1 + \tau_2 + \tau_1' + \tau_2'$	$ au \mathrm{CH_3}$	CH ₃ torsion
$S_5 = \omega_1 + \omega_1'$	ω CNC	(CH ₃) ₂ N out-of-plane wag
$S_8 = \omega_2 + \omega_2'$	ω CSS	CSS out-of-plane wag
$S_1 = b_1 + b_1'$	bSS	SS bending
$S_8 = b_2$	bLig	Out-of-plane bending of
		both ligands relative to the nickel atom
Species B_{3u}		the meker atom
$S_1 = 2r_1 - r_2 - r_3 - 2r_4 + r_5 + r_4 + r_5 + r_6 + r_8 + r_$		
$2r_1' - r_2' - r_3' - 2r_4' + r_5' + r_6'$	$ u_{\mathbf{as}}\mathrm{CH}$	Asym. CH stretch
$S_2 = r_1 + r_2 + r_3 - r_4 - r_5 - r_6 + r_1' + r_2' + r_3' - r_4' - r_5' - r_6')$ $S_3 = P_1 - P_2 + (P_1' - P_2')$		g grr
$r_1' + r_2' + r_3' - r_4' - r_5' - r_6'$	$\nu_{\rm s}{ m CH}$	Sym. CH stretch
$S_3 = P_1 - P_2 + (P_1' - P_2')$	$v_{\rm as}{ m CNC}$	Asym. CNC stretch
$S_4 = D_1 - D_2 + (D_1' - D_2')$ $S_1 = 2\pi$	$v_{ m as}{ m CSS}$	Asym. CSS stretch
$\begin{aligned} S_5 &= 2\alpha_1 - \alpha_2 - \alpha_3 - 2\alpha_4 + \alpha_5 + \alpha_6 + \\ 2\alpha_1' - \alpha_2' - \alpha_3' - 2\alpha_4' + \alpha_5' + \alpha_6' \end{aligned}$	$\delta_{ m as}{ m CH_3}$	Asym. CH ₃ deformation
$ 2\alpha_{1} - \alpha_{2} - \alpha_{3} - 2\alpha_{4} + \alpha_{5} + \alpha_{6} + \alpha$	oas · · · 3	ing in only determine
$\alpha_1' + \alpha_2' + \alpha_3' - \alpha_4' - \alpha_5' - \alpha_6'$	$\delta_{ m s}{ m CH_3}$	Sym. CH ₃ deformation
$\begin{array}{l} S_{7} = 2\beta_{1} - \beta_{2} - \beta_{3} - 2\beta_{4} + \beta_{5} + \beta_{6} + \\ 2\beta_{1}' - \beta_{2}' - \beta_{3}' - 2\beta_{4}' + \beta_{5}' + \beta_{6}') \end{array}$	ū	•
$2\beta_1' - \beta_2' - \beta_3' - 2\beta_4' + \beta_5' + \beta_6'$	$ ho \mathrm{CH_3}$	In-plane $\mathrm{CH_3}$ rock
$ S_8 = \beta_1 + \beta_2 + \beta_3 - \beta_4 - \beta_5 - \beta_6 + \beta_1' + \beta_2' + \beta_3' - \beta_4' - \beta_5' - \beta_6') S_9 = \delta_1 - \delta_2 + (\delta_1' - \delta_2') $		TD - 3 1 4
$\beta_1' + \beta_2' + \beta_3' - \beta_4' - \beta_5' - \beta_6'$	-088	Redundant
$S_{0} = \delta_{1} - \delta_{2} + (\delta_{1}' - \delta_{2}')$	$ \varrho \text{CSS} $	In-plane CSS rock
$S_{10} = \Lambda_1 - \Lambda_2 + (\Lambda_1' - \Lambda_2')$	$\delta_{ m as} { m CSN} { m i}$	Asym. CSNi deformation
$S_{11} = \gamma_1 - \gamma_2 + (\gamma_1' - \gamma_2')$	QCNC	In-plane (CH ₃) ₂ N rock Asym. NiS stretch
$S_{12} = L_1 - L_2 + (L_1' - L_2')$ $S_{13} = \mu_1 - \mu_2$	$egin{aligned} v_{ m as} m NiS \ ho m Lig \end{aligned}$	In-plane rocking of both
$J_{13} - \mu_1 - \mu_2$	6171R	The President of Double
		ligands relative to the

 $\label{eq:Table 3. Final valence force constants for bis(dimethyldithiocarbamato)nickel(II) and bis(dimethyldiselenocarbamato)nickel(II), [(CH_3)_2NCXX]_2Ni, X=S \ or \ Se.}$

Force constant	Group	Coordinates involved	Atoms common to interacting coordinates	X = S	a for X = Se	
		Strete	h			
K_{r}	CH ₃	C-H		4.699	4.699	
$K_{\mathbf{p}}$	$CH_3 - N$	$\mathbf{C} - \mathbf{N}$		4.60	4.37	
$K_{\mathbf{R}}^{\mathbf{r}}$	$N-C*X_{2}$	$N-C^*$	_	6.50	6.47	
K_{D}	C*X2	C^*-X	-	3.95	4.45	
K _L	NiX ₂	Ni – X		0.90	0.80	
		Stretch-st	retch			
$F_{\mathfrak{r}}$	CH_3	С-Н, С-Н	\mathbf{c}	0.043	0.04	
$oldsymbol{ar{F}_{\mathbf{P}}^{\mathbf{r}}}$	$CH_3 - N - CH_3$	$\ddot{\mathbf{C}} - \ddot{\mathbf{N}}, \ddot{\mathbf{C}} - \ddot{\mathbf{N}}$	Ň	0.80	1.01	
$ ilde{F}_{ m D}^{ m P}$	$X-C^*-X$	C^*-X , C^*-X	Ĉ*	0.55	2.00	
$oldsymbol{ar{F}_{ ext{PR}}^{D}}$	$CH_3 - N - C*X_2$	C-N, N-C*	Ň	0.178	0.17	
$F_{ m RD}^{ m PR}$	N-C*-X	N-C*, C*-X	Č*	0.234	0.23	
		Bend				
H_{σ}	CH ₃	/ HCH		0.54	0.54	
H_{β}^{α}	$CH_3^3 - N$	ZHCN	_	0.73	0.73	
$H_{\gamma_1}^{\rho} = H_{\gamma_1}$	CH_3 - $N - C*X_2$	/ CNC*	_	0.60	1.20	
$H_{\gamma_1}^{\gamma_1-11\gamma_1}$	$CH_0 - N - CH_0$	Z CNC	um.	1.00	0.60	
$H_{\delta_1} = H_{\delta_1}$	$ \begin{array}{c} \mathbf{CH_3 - N - CH_3} \\ \mathbf{N - C^* - X} \end{array} $	∠NC*X		1.40	1.30	
H_{δ_1}	$X - C^* - X$	ZXC*X		1.20	0.60	
H_{λ}	$C^* - X - Ni$	C*XNi	_	1.20	1.11	
H_{π}	X - Ni - X	ZNiX	_	1.20	1.04	
$H_{\mu}^{\cdot \cdot}$	$X - Ni - X^*$	ZNiX*		1.00	1.00	
H_{ω}	$(CH_3)_*N-C^*$	$\angle C_2NC^*$	_	0.158	0.17	
H_{ω_1}	$\hat{\mathbf{N}} - \hat{\mathbf{C}}^* \mathbf{X}_2$	$\overline{\angle}$ NC*X ₂	_	0.40	0.42	
H_{b_1}	C*X,Ni	∠C*X₂Ni	-	0.35	0.33	
H_{b} ,	X ₂ NīX ₂ *	$\overline{\angle}$ X ₂ NiX ₂ *		0.35	0.33	
		Stretch-b	end			
$F_{{ m P}eta}$	$CH_3 - N$	C−N, ∠HCN	C-N	0.318	0.318	
$ ilde{m{F}}_{\mathbf{P}\gamma}^{P ho}$	$CH_{\bullet} - N - C*X_{\bullet}$	$C-N$, $\angle CNC^*$	$\tilde{\mathbf{C}} - \tilde{\mathbf{N}}$	0.347	0.34	
$F_{ m R\gamma}^{ m F\prime}$	$CH_{\bullet} - N - C*X_{\bullet}$	C^*-N , $\angle CNC^*$	$C^* - N$	0.283	0.28	
$F_{ m R\delta}^{ m R\delta}$	$N-C^*-X$	$N-C^*$, $\angle NC^*X$	N-C*	0.283	0.28	
	Bend-bend					
F_{eta}	$CH_3 - N$	∠HCN, ∠HCN	$\mathbf{C} - \mathbf{N}$	-0.04	-0.04	
$\widetilde{F}_{\omega_1\omega_2}^{ u}$	$C_2N - C*X_2$	7 C,NC*. / NC*X.	$N-C^*$	$0.10^{\ b}$	0.10	
$F_{\delta\mu}$	NC*X2NiX2*	$\angle C_2NC^*$, $\angle NC^*X_2$ $\angle NC^*X$, $\angle XNiX^*$	X	0.20	0.20	
		Torsio	n			
$H_{ au}$	$CH_3 - N$	C-N	_	0.0335	0.033	

 $[^]a$ In units of mdyn/A (stretch constants), mdyn/rad (stretch-bend interaction constants), and mdyn A/(rad) a (bending and torsion constants). b The out-of-plane wagging coordinates have been defined in such a way, that displacements

to the same side of the ligand correspond to identical signs of the wagging coordinates.

The force field for the internal coordinates around the nickel atom was initially estimated from several published UBFF values. $^{1,2,8-10}$ A Ni – S stretching force constant between 1.4 and 2.0 mdyn/Å and a S – Ni – S bending force constant somewhere below 0.65 mdyn Å/(rad)² were selected as a first approximation. The omission of the repulsive terms of the UBFF and the introduction of the GVFF interaction terms must necessarily have a large influence on these values. The results of the present calculations (where the number of interaction constants has been held as low as possible) give a Ni – S stretching force constant of 0.90 mdyn/Å and a S – Ni – S bending force constant of 1.0-1.2 mdyn Å/(rad). As expected, the values of the selenium complex tend to be somewhat smaller.

On comparing the results listed in Table 3 with those previously given for the ligands ^{4,5} it can be seen that most of the force constants have been almost directly transferred. However, several changes occur, which can be related to the influence of the nickel atom and interpreted in conventional terms. The most striking change is that of the force constant of the central CN bond, which increases from 4.80/5.35 in the DDTC/DDSC ligands to around 6.50 mdyn/Å in the complexes. This is satisfactory, since complex formation will be followed by an increased weight of the resonance structure ¹¹

$$CH_3$$
 $\stackrel{+}{N} = C$
 $X^ CH_3$
 X
 $(X = S, Se)$

and the increased double bond character of the central CN bond is properly reflected in an increased force constant for stretching of this bond.

The changes in force field on substituting selenium for sulfur in the DDTC ligand have previously been discussed 5 and comprise, apart from the changes discussed above, a decrease in $K_{\rm P}$ and an increase in $F_{\rm P}$ and $F_{\rm D}$, as well as several changes in the bending force constants. The stretching force constants $K_{\rm P}$, $F_{\rm P}$, and $F_{\rm D}$ show a similar trend for the complex compounds, but the changes in $K_{\rm P}$ and $F_{\rm D}$ appear to be greater in the complex compounds, indicating that the force field is not wholly correct. The changes in the bending force constants are not consistent, but this may depend on the assumption of identical interbond angles in the thio and the seleno compounds and is not considered serious.

The calculated fundamentals and an approximate description in symmetry coordinates are listed in Table 4 for DDTC-Ni and DDSC-Ni. The deviation of the frequencies originating mainly from the ligand vibrations is generally similar to that found for the free ligands.^{4,5} For the several new modes of vibration introduced by complex formation with nickel the agreement between calculated and experimental values is considered satisfactory in view of the very simplified GVFF used in the calculations.

DISCUSSION

A description of the infrared spectra of the complex compounds is now possible by comparing the spectra in three different ways. First, the spectrum

of a compound can be compared to the spectrum of the corresponding perdeuterated compound, which gives the familiar effect of deuteration. Second, the spectrum of a certain ligand can be compared to the spectrum of the corresponding (nickel) complex, *i.e.* we can discuss the effect of complex formation. Third, the spectrum of a compound containing sulfur can be compared to the spectrum of the corresponding compound in which sulfur has been replaced by selenium, indicating the effect of selenation.

The experimental spectra of the free ligands are shown in a previous paper ⁵ while those of the complex compounds are reproduced in Fig. 1 of this paper, all in the region below 1330 cm⁻¹. The description of the fundamentals is based on the potential energy distributions (Table 4) and the calculated L-matrices (which are not reproduced to save space). A description of the fundamentals of the ligands has been given in previous papers.^{4,5}

The most characteristic band of the complex compounds is $\nu_3(B_{1u})$, a very strong, broad band in the region 1500 - 1600 cm⁻¹. The counterparts in the spectra of the free ligands are found at somewhat lower frequencies and have been shown to originate mainly in an out-of-phase combination of rCN and v_{ϵ} CNC (more or less coupled to internal modes of the methyl groups). A quite similar description applies to the complex compounds, although the contribution from ν CN has increased relative to that of ν_e CNC. In the case of the selenium-containing complexes this vibration is coupled also to r_cCSeSe, so that a more appropriate description is an out-of-phase combination of vCN, v.CNC, and v.CSeSe. On deuteration, the frequency of the internal modes of the methyl groups is lowered and the contribution to this absorption drops almost to zero; accordingly, $\nu_3(B_{1u})$ is displaced towards lower frequencies on deuteration. According to Durgaprasad's results,² in DDTC-Ni this band arises from vCN weakly coupled (out-of-phase?) to v. CNC and v. CSS. in fair agreement with the results of the present calculation. To summarise, the strong, broad band in the region 1400-1600 cm⁻¹ can be generally described as due to out-of-phase skeletal stretching, however, with varying contributions from internal modes of the methyl groups.

Both descriptions of $v_3(B_{1u})$ compare favourably to empirical evidence, which is best rationalised by treating this band as due to stretching of the central CN bond, *i.e.* vCN. Thus, when the importance of the resonance structure $R_2N^+ = CX_2^{2-}$ (X=S, Se) is expected to increase (by complex formation; introducing electron donating groups on nitrogen) the frequency of this band also increases.^{12–18}

In the frequency range $1300-1500~{\rm cm^{-1}}$ in DDTC-Ni and DDSC-Ni the deformational modes of the methyl groups occur. On deuteration they are displaced to the region $1000-1100~{\rm cm^{-1}}$. In the frequency range $1000-1200~{\rm cm^{-1}}$ in DDTC-Ni and DDSC-Ni the rocking modes of the methyl groups are found. The band near $1150~{\rm cm^{-1}}$ is the strongest of these, probably because the B_{1u} fundamental, ν_6 , containing the skeletal $\nu_8{\rm CXX}$ (X=S, Se) symmetrical stretching mode, is a component of this absorption. Some authors have assigned this band to one of the CNC stretching frequencies, 13,19 probably because it was observed only in dialkyldithiocarbamates and not in dithiocarbamates lacking alkyl substituents. Obviously, the present assignment may also explain this experimental result.

Table 4. Calculated (v_{calc} , cm⁻¹) and observed (v_{obs} , cm⁻¹) frequencies and potential energy distribution for bis(N,N-dimethyldiselenocarbamato)nickel(II), and the corresponding perdeuterated compounds, using a 31-parameter generalized valence force field.

ž		$[(\mathrm{CH_3})_2]$	[(CH ₃) ₂ NCSS] ₂ Ni		[(CD ₃)]	(CD ₃) ₂ NCSS] ₂ Ni	Ξ	$CH_3)_{2}N$	[(CH ₃) ₂ NCSeSe] ₂ Ni	<u>_</u>	$(\mathrm{CD_3})_2 \mathbb{R}$	(CD ₃) ₂ NCSeSe] ₂ Ni
V	"calc	"obs	Description a	Vcalc	Vobs	Description 4	"calc	"obs	Description 4	"calc	v_{obs}	Description a
$B_{1u} v_1$	2964	2910	v _{as} CH(99)	2218 2081	2233 2061	$\nu_{as}^{c}CD(96)$	2963 2884	2908 2848	ν _{as} CH(99) ν _c CH(100)	2217	2219	$\nu_{\rm as}{ m CD}(97)$
	1534	1553	$v_{\rm S}^{\rm CN}(57)$, $v_{\rm S}^{\rm CNC}(14)$, $v_{\rm CCH_3}(14)$	1510	1500	$v^{CN}(7\theta),$ $v_{\rm s}^{\rm CNC}(14)$	1539	1555	vCN(58), vCNC(13), vCH ₃ (13),	1518	1504	$v_{\rm S}^{\rm CN}(70)$, $v_{\rm S}^{\rm CN}(13)$, $v_{\rm S}^{\rm CSeSe}(15)$
,	1452	1446	$\delta_{ m as} { m CH_3(84)}$	1050	1048	$\delta_{ m as} { m CD}_3(94)$	1453	1446	$ \nu_{\rm s} \text{CSeSe}(11) $ $ \delta_{\rm as} \text{CH}_{3}(84) $	1050	1044	$\delta_{\rm as} { m CD_s}(93)$
, °,	1147	1150	$\varrho_{CH_3(45)}$	767	790	$\rho(D_3(57), CMS(55), CMS(55)$	1153	1144	$ \rho CH_3(45), $	1001	765	$\rho_{SCD_3(49)}^{OSCD_3(49)}$
2.4	946	944	$v_{\rm s}CNC(47),$ $v_{\rm s}CNC(47),$	1137	1113	v _s CNC(23) v _s CNC(37),	947	ı	$v_{\rm s} Coece(20)$ $v_{\rm s} CNC(47)$,	1142	1107	v _s CNC(20) v _s CNC(39),
1,8	268	570	$v_{\rm s}CSS(45), v_{\rm CN}(17).$	541	539	$v_{\rm s}CSS(49), v_{\rm c}CN(16).$	524	535	$v_{\rm s}CSeSe(33), v_{\rm s}CN(20).$	484	490	$v_{\rm s}CSeSe(35),$ $v_{\rm s}CS(23),$
°,	453	444	$v_{\rm s}{ m CNC}(22)$ $\delta { m GSS}(30),$ $v_{\rm s}{ m CSNi}(19),$ $\delta { m CNC}(18)$	438	414	$\frac{v_{\rm s}{ m CNC}(16)}{\delta { m CSN}(36)}, \\ \delta_{\rm s}{ m CSNi}(16), \\ \delta { m CNC}(9)$	335	328	$ \mu_{\rm s}^{\rm CNC(27)} $ $ \delta CNC(48), $ $ \delta_{\rm s}^{\rm CSeNi(11)}, $ $ \delta_{\rm seNiSe(11)} $	316	328	$v_{\rm s}{\rm CNC}(23)$ $\delta{\rm CNC}(19)$, $\delta_{\rm s}{\rm CSeNi}(16)$, $\delta{\rm SeNiSe}(20)$,
1,10	379	388	$v_{ m s}{ m NiS}(54)$	365	363	$v_{\rm s}{ m NiS}(51)$	300	298	$v_{\rm s}{ m NiSe}(66)$	290	298	$v_{\rm s}NiSe(37)$ $v_{\rm s}NiSe(40),$
r ₁₁₁	292	301	$\delta CNC(39)$, $\delta_{\rm s}^{\rm CSNi(15)}$	267	286	$\delta CNC(53), \ \delta_{\rm s} CSNi(10)$	228	204	$\delta CSeSe(35), \\ \delta_{\rm s} CSeNi(34)$	218	204	$\delta CNC(31)$ $\delta CSeSe(30),$ $\delta_s CSeNi(28),$ $\delta CNC(25)$

Table 4. Continued.

νCD(98) δCD ₃ (90) ρCD ₃ (80) ωCSeSe(77) ωCNC(77) bLiq(60), bSeSe(39) τCD ₃ (83) bSeSe(32), ωCNC(35)	r _{as} CD(98) r _s CD(99) δ _{as} CD _s (67) δ _{as} CD _s (67) δ _{as} CSeN(33) r _{as} CSeN(18), r _{as} CSeSe(18) σ _{as} CSeSe(18) σ _{as} CSeSe(18) σ _{as} CSeSe(26)	<i>o</i> Lig(55)
2174 1044 965 490 246 144	6	74
2209 1049 895 492 246 144 88	2212 2074 1062 1041 1215 783 888 346 346 157	89
νCH(99) δCH ₃ (87) ρCH ₃ (87) ρCH ₃ (87) ρCH ₃ (87) ωCNG(76) ωLiq (58), bScSe(40) τCH ₃ (81) bLiq (81) bLiq (81) bScSe(33), ωCNG(34)	γ _{as} CH(99) δ _{as} CH(100) δ _s CH ₄ (88) δ _s CH ₃ (96) αCSeSe(23), δ _{as} CSeN ₄ (28), γ _{as} CNC(24), γ _{as} CNC(24), γ _{as} CNC(24), γ _{as} CNC(36), γ _{as} CNC(36), γ _{as} CSeSe(15), γ _{as} CSeSeSe(15), γ _{as} CSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSe	oLig(59)
2950 1446 1144 498 272 144		82
2960 1464 1120 497 271 144 123 45	2962 2882 1461 1385 1222 1040 883 373 301	7
νCD(98) δCD ₃ (90) ρCD ₃ (84) ωCSS(79) ωCNC(71) bLiq(61), bSS(34) τCD ₃ (82) bLiq(29), ωCNC(37)	γ ₃ CD(98) γ ₃ CD(99) δ ₄ SCD(3(71) δ ₅ CD ₃ (71) γ ₃ CSC(39), γ ₃ CSC(39), γ ₃ CSC(10), δ ₆ CSC(10), δ ₆ CSC(10), δ ₆ CSC(17) γ ₃ CSC(17) γ ₄ CSC(17) γ ₄ CSC(17) γ ₅ CSC(17	$arrho Lig(39), \ \delta_{ m as} CSNi(26)$
2186 1048 977 545 245 176	2186 2061 1048 1064 1064 1225 397 397 -	ç
2209 1050 895 546 247 176 89	2210 2076 1045 1066 1248 1248 1248 3982 3983 375 181	9
νCH(99) δCH ₃ (87) δCH ₃ (87) φCH ₃ (85) ωCSS(80) ωCNC(72) bLiq(60), bSS(36) τCH ₃ (81) τCH ₃ (81) δSS(29), ωCNC(37)	v _{aS} CH(99) v _b CH(100) d _{as} CH ₃ (88) d _{as} CH ₃ (88) d _{as} CH ₃ (88) v _{as} CSS(35), d _{as} CSS(36), v _{as} CSS(36), v _{as} CSS(36), d _{as} CSN(13) d _{as} CSS(30), d _{as} CSN(240), d _{as} CSN(37)	$ ho Lig(44), \ \delta_{ m as} CSNi(22)$
2950 1446 1150 549 273 179		<u> </u>
2961 1464 1120 549 271 177 121 49	2961 2883 1462 1383 1383 1246 957 416 376 192	22
B2u V12 V13 V14 V15 V15 V15 V18 V18 V18	B ₅₄₄ V ₂₀ V ₂₂ V ₂₃ V ₂₄ V ₂₅ V ₂₆ V ₂₆ V ₂₇ V ₂₈ V ₂₉	,30

^a Abbreviations used (g'. Table 2): ν = stretching, δ = deformation, ϱ = rocking, ω = wagging, τ = torsion, and, as subscripts, s = symmetric, as = antisymmetric. The rounded potential energy distribution values are shown in parenthesis; small values have been neglected. In cases where several vibrations contribute significantly, the most important is printed in italics.

In the region between 1240 and 1260 cm⁻¹ in DDTC and DDTC-Ni there is observed $\nu_{24}(B_{3u})$, a band of medium strength, which is displaced by about 20 cm⁻¹ on deuteration or by selenation. This band is due to an out-of-phase combination of ν_{as} CNC and ν_{as} CXX (X=S, Se) coupled to skeletal angle deformation. In the case of the free ligands the latter component was mainly ρ CNC, but in the case of the complex compounds this has been replaced by ρ CXX (X=S, Se) and ρ _{as}CXNi. According to the calculations by Durgaprasad et al. on DDTC-Ni ² it should be described as due mainly to ν _{as}CNC, but with small contributions from ρ CNC and ρ CSS. The use of this absorption in empirical work has turned out to be of doubtful value.^{17,18}

In the infrared region between 950 and 1000 cm⁻¹ a strong broad band is observed in both DDTC and DDTC-Ni. Since it is almost unchanged by deuteration, but displaced by about 100 cm⁻¹ towards lower frequencies on selenation, a tentative empirical conclusion is that it can be described as mainly $\nu_{\rm as}$ CXX (X=S, Se) (see references in part I of this series.⁶) The calculations indicate that this band should be assigned to $\nu_{\rm 26}(B_{3u})$ which originates from $\nu_{\rm as}$ CXX coupled in-phase with $\nu_{\rm as}$ CNC in various proportions. Since the potential energy distributions (Table 4) are almost identical in DDTC-Ni and DDSC-Ni it is obviously correct to say that this band has the same origin in both complexes. This is also approximately true for the deuterated complexes.

The reason for the shift of this absorption towards lower frequencies on selenation can now be summarised as follows. (1) Probably the geometry of the CXX group differs for the two complexes, but this effect has not been explored and will be neglected in the present discussion. (2) The increased mass of selenium relative to sulfur can account only for ca. 30 cm⁻¹ of the 100 cm⁻¹ shift actually found (cf. Ref. 3). (3) The remaining shift is due partly to the lowered force constant for asymmetrical CNC stretching, partly to the lowered force constant for asymmetrical CXX stretching on selenation. It has been proposed that this frequency could be used to estimate stability of complex compounds, but in the light of our calculations the use of $v_3(B_{1u})$ in the 1500 cm⁻¹ region seems much more attractive for this purpose.

In the region between 500 and 600 cm⁻¹ the two fundamentals $\nu_8(B_{1u})$ and $\nu_{15}(B_{2u})$ are found. Both behave in the same way as the infrared counterparts $\nu_8(A_1)$ and $\nu_{28}(B_2)$ in the spectra of the free ligands, and have a similar origin.⁵ The former is the in-phase combination of $\nu_s \text{CXX}$, νCN , and $\nu_s \text{CNC}$ (X = S, Se), *i.e.* the skeletal breathing vibration. The latter is due to the CXX

wagging motion.

The region below 500 cm⁻¹ has recently been discussed by Ojima et al. for DDTC-Ni.²⁰ The three metal translation vibrations expected to occur in this region are (1) the symmetrical Ni-S stretching vibration of species B_{1u} , ν_s NiS, (2) the antisymmetrical Ni-S stretching vibration of species B_{3u} , ν_{as} NiS, and (3) a ring out-of-plane vibration, in which the ligands bend out-of-plane relative to the central nickel atom, bLig. In the latter vibration the ligands move up and down like the wings of a butterfly, and it may conveniently be described as a "flapping" motion of the molecule. The working hypothesis of Ojima et al. is, that since only three strong bands whose fre-

quencies change with the central metal ion were observed, these can be assigned to the vibrations described above, at 387, 300, and 179 cm⁻¹, respectively.

According to our results this treatment is not adequate. In our opinion, the resistance of the C-S-metal angle to deformation is expected to depend on the strength of the bond between the sulfur atom of the ligand and the metal atom. This means that absorptions involving either (1) symmetrical deformation of the CSNi angles, δ_s CSNi, of species B_{1u} , or (2) antisymmetrical deformation of the CSNi angles, δ_{as} CSNi, of species B_{3u} are also expected to be dependent on the central metal ion. This is necessarily also true for the vibration in which the two ligands rock in-plane around the metal atom, ϱ Lig, of species B_{3u} .

In species B_{1u} the fundamental v_{10} at 388 cm⁻¹ can be described as v_s NiS in agreement with Ojima et al. 20 The two fundamentals ν_9 and ν_{11} both involve $\delta_{\rm c}$ CSNi, but their main components are other skeletal deformation vibrations, and their variation with the metal atom should only be small. The former band at 444 cm⁻¹ is independent of the central metal, while the latter fundamental at 301 cm⁻¹ changes at least 30 cm⁻¹ from the nickel to the palladium complex. It seems that calculations and experiment disagree slightly here.

In species B_{3u} the fundamental v_{28} at 376 cm⁻¹ can be described as v_{as} NiS. This means that according to our treatment v_s NiS and v_{as} NiS should be almost coincident, while Ojima et al. ascribe them to bands separated by ca. 75 cm⁻¹. We do not claim our assignment to be correct, but if the two vibrations are to be placed so far apart it is necessary to introduce a fairly big interaction force constant in the GVFF, and this seems rather unlikely in view of the mass of the nickel atom.

The fundamentals v_{29} and v_{30} of species B_{3u} arise from the strongly coupled ϱ Lig and δ_{as} CSNi modes. Only the latter fundamental has been assigned to the band near 90 cm⁻¹. It is displaced 8 cm⁻¹ towards lower frequencies by replacing nickel with palladium.

In species B_{2u} the calculations show that the "flapping" motion of the ligands is strongly coupled to bending of the ligands around the S...S line (see Fig. 2), giving rise to the fundamentals ν_{17} and ν_{19} . Only the former of these has been observed, at 179 cm⁻¹, in accordance with the results of Ojima et al. The fundamental ν_{16} at 273 cm⁻¹ occurs in all dimethyldithiocarbamates and dimethyldiselenocarbamates irrespective of the nature of the central metal. According to the calulations it can be described as mainly ω CNC, i.e. the wagging motion of the dimethylamino group.

REFERENCES

- 1. Nakamoto, K., Fujita, J., Condrate, R. A. and Morimoto, Y. J. Chem. Phys. 39 (1963) 423.
- 2. Durgaprasad, G., Sathyanarayana, D. N. and Patel, C. C. Can. J. Chem. 47 (1969)
- 3. Pilipenko, A. T. and Mel'nikova, N. V. Zh. Neorg. Khim. 14 (1969) 462; Russian Inorg. Chem. 15 (1970) 608. (English Transl.).
 Jensen, K. A., Dahl, B. M., Nielsen, P. H. and Borch, G. Acta Chem. Scand. 25 (1971)
- 5. Jensen, K. A., Dahl, B. M., Nielsen, P. H. and Borch, G. Acta Chem. Scand. 25 (1971) 2039.

- 6. Jensen, K. A., Mygind, H., Nielsen, P. H. and Borch, G. Acta Chem. Scand. 24 (1970) 1492.
- 7. Jensen, K. A. and Krishnan, V. Acta Chem. Scand. 21 (1967) 2904.
- 8. Agarwala, U., Lakshmi and Rao, P. B. Inorg. Chim. Acta 2 (1968) 337.
- 9. Siimann, O. and Fresco, J. Inorg. Chem. 8 (1969) 1846.
- 10. Barraclough, C. G., Martin, R. L. and Stewart, I. M. Australian J. Chem. 22 (1969)
- 11. Jensen, K. A., Krishnan, V. and Jørgensen, C. K. Acta Chem. Scand. 24 (1970) 743.
- 12. Jowitt, R. N. and Mitchel, P. C. H. J. Chem. Soc. A 1970 1702.
- 13. Coutts, R. S. P., Wailes, P. C. and Kingston, J. V. Australian J. Chem. 23 (1970) 463.
- 14. Prabhakaran, C. P. and Patel, C. C. Indian J. Chem. 7 (1969) 1257.
- McCormick, B. J., Stormer, B. P. and Kaplan, R. I. *Inorg. Chem.* 8 (1969) 2522.
 Beurskens, P. T., Cras, J. A. and van der Linden, J. G. M. *Inorg. Chem.* 9 (1970)
- 17. Honda, M., Komura, M., Kawasaki, Y., Tanaka, T. and Okawara, R. J. Inorg. Nucl. Chem. 30 (1968) 3231.
- Kamitani, T., Yamamoto, H. and Tanaka, T. J. Inorg. Nucl. Chem. 32 (1970) 2621.
 Smith, J. N. and Brown, T. M. Inorg. Nucl. Chem. Lett. 6 (1970) 441.
- 20. Ojima, I., Onishi, T., Iwamoto, T., Inamoto, N. and Tamaru, K. Inorg. Nucl. Chem. Lett. 6 (1970) 65.

Received July 12, 1971.