Normal Coordinate Analysis of the Non-Planar Vibrations of 1,3,4-Thiadiazole

D. H. CHRISTENSEN and T. STROYER-HANSEN

Chemical Laboratory V, University of Copenhagen, The H. C. Ørsted Institute, DK-2100 Copenhagen, Denmark

Harmonic potential functions for the out-of-plane vibrations of 1,3,4-thiadiazole have been calculated by using deuterium isotopic frequency data.

Normal coordinates have been calculated for the two possible sets

of force constants in each symmetry species.

An attempt has been made to select the set of force constants with physical significance from ¹³C isotopic frequency data and ¹⁵N isotopic frequency data.

The assignments of the fundamental vibration frequencies of 1,3,4-thiadiazole (I), 2D-1,3,4-thiadiazole (II), 2,5D₂-1,3,4-thiadiazole (III), 2-¹³C-1,3,4-thiadiazole (IV) and 3-¹⁵N-1,3,4-thiadiazole (V) 1 provide us with sufficient frequency data to calculate the most general quadratic potential function for the out-of-plane vibrations of 1,3,4-thiadiazole.

The normal frequencies of I and III should in principle determine the six symmetry force constants in the harmonic potential function.

To obtain a potential function, which accounts for all the observed normal frequencies, we have used the experimental data in the following way:

- 1. Root mean square adjustments of the frequencies of I, II, and III to obtain a consistent set of frequencies according to the isotopic rules.
- 2. Calculation of the force constants by solving the secular equations of I and III.
- 3. An attempt to select the set with physical significance using the isotopic frequency shifts of IV and V.

CALCULATIONS

We started from the conventional coordinates: 2

- 2 out-of-plane bond bendings γ and γ' and
- 5 bond torsions $\varrho, \varrho', \delta, \delta'$ and τ

as shown in Fig. 1. Using a set of symmetry coordinates from Table 1 similar to those previously used on thiophene 3 we are able to compare the results

Acta Chem. Scand. 26 (1972) No. 3

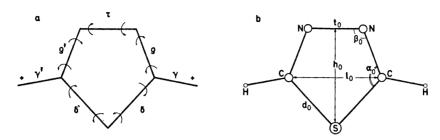


Fig. 1. 1,3,4-Thiadiazole. Non-planar internal coordinates and geometrical parameters.

Table 1. 1,3,4-Thiadiazole. Non-planar redundant and symmetry coordinates.

A₂ species

Redundant coordinates:

$$\begin{array}{ll} \text{I} & \tau - \cos \beta_0 \; (\varrho + \varrho') + \cos \left(\alpha_0 + \beta_0\right) \; (\delta + \delta') & = 0 \\ \text{IIa} & t_0 \sin \beta_0 \; \tau - l_0 \sin \alpha_0 \; (\delta + \delta') & = 0 \\ \text{IIb} & h_0 \; \tau + d_0 \sin \alpha_0 \; (\varrho + \varrho') & = 0 \end{array}$$

Symmetry coordinates:

S
$$\gamma - \gamma'$$

T $-2l_0d_0 \sin \alpha_0 \tau + h_0l_0 (\varrho + \varrho') - t_0d_0 \sin \beta_0 (\delta + \delta')$

 B_2 species

Redundant coordinate:

III
$$\sin (\alpha_0 + \beta_0) (\delta - \delta') - \sin \beta_0 (\varrho - \varrho') = 0$$

Symmetry coordinates:

$$\begin{array}{ll} {\rm S} & \gamma + \gamma' \\ {\rm T} & \sin \, \beta_0 \, \left(\delta - \delta' \right) + \sin \, \left(\alpha_0 + \beta_0 \right) \, \left(\varrho - \varrho' \right) \end{array}$$

 h_0 , d_0 , l_0 , l_0 , a_0 , and β_0 are geometrical parameters of the pentagonal ring. The redundant coordinate II should be a linear combination of IIa and IIb orthogonal to the redundant coordinate I. All coordinates should be normalized.

from this work with the potential function of thiophene. The kinetic energy matrix **G** was calculated from the structure, determined in this laboratory.⁴

The experimental frequencies were adjusted in order to fulfill exactly the product rules and the complete isotopic rule between I, II, and III. This adjustment was made in such a way, that the root mean square of the cor-

rections of the square of the frequencies $\sqrt{\frac{1}{n}} \sum (v_{\rm adj}^2 - v_{\rm obs}^2)^2$ was minimized,

Table 2. The secular determinant equation:

$$|GF - \lambda E| = 0$$

was expanded directly, yielding the two relations:

Table	2.	1,3,4-Thiadiazole	and	its	deuterated	species.	Normal	frequencies,	observed	
				an	d adjusted	(cm ⁻¹).		•		

Frequency	obs.	adj.	Compound obs.	adj.	obs.	adj.
v_{7}	796	796.5	635	635.0	626	625.6
v_8	616	616.2	613	613.1	603	602.4
v_{14}	820	820.2	809	809.0	650	649.7
v_{15}^{12}	483	483.5	459	458.7	437	436.8

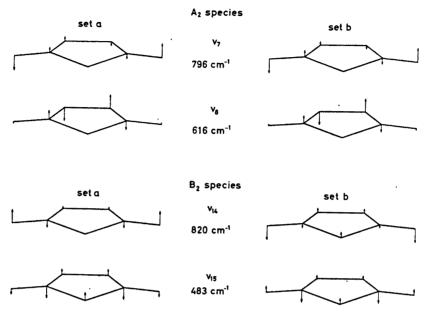
$$\lambda_{\rm i} + \lambda_{\rm i} = F_{\rm SS}G_{\rm SS} + 2F_{\rm ST}G_{\rm ST} + F_{\rm TT}G_{\rm TT} \tag{i}$$

$$\lambda_{i}\lambda_{i} = (F_{SS}F_{TT} - F_{ST}^{2})(G_{SS}G_{TT} - G_{ST}^{2})$$
 (ii)

where i and j refer to the two normal frequencies of the symmetry species, and S and T refer to the two symmetry coordinates of the species; Table 1.

Using frequency data from I and III, we obtained in each symmetry species, A_2 and B_2 , three independent equations for determination of $F_{\rm ss}$, $F_{\rm st}$ and $F_{\rm TT}$. Because of the second order eqn. (ii), we obtained two sets of $F_{\rm st}$ and $F_{\rm TT}$ in each species. Only the CH-deformation force constant $F_{\rm ss}$

Table 3. 1,3,4-Thiadiazole. Non-planar symmetry force constants (mdyn Å/rad²).


	A_2 s	A_2 species		B_2 species		
	set a	$\operatorname{set} b$	set a	$\mathbf{set}\ b$		
$F_{\circ\circ}$	0.3584	0.3584	0.4048	0.4048		
$F_{ extsf{ST}} \ F_{ extsf{TT}}$	$0.1904 \\ 0.3309$	$0.1695 \\ 0.3100$	$-0.2264 \\ 0.4228$	$-0.5086 \\ 0.9353$		

is uniquely determined; Table 3. It means, that in the non-planar species there are four different potential functions, each accounting for the observed frequencies of I, II, and III. Calculation of the normal coordinates of I, (Fig. 2), shows, at least for the B_2 vibrations, a pronounced difference between the two different sets of $F_{\rm ST}$ and $F_{\rm TT}$.

CONSIDERATIONS

In Table 4 we compare the observed and the calculated isotopic shifts of IV and V. It is seen, that the observed isotopic shifts of v_7 , v_8 , v_{14} , and v_{15} of IV are found as 3 cm⁻¹, 2 cm⁻¹, 2 cm⁻¹, and 6 cm⁻¹, respectively. The best agreement with the calculated isotopic shifts are given using the potential function consisting of set b of the A_2 species and set a of the B_2 species. The uncertainties of the observed isotopic shifts are, however, too large to justify an unambiguous selection of a potential function from these experimental

Acta Chem. Scand. 26 (1972) No. 3

 $Fig.\ 2.\ 1,3,4$ -Thiadiazole. Normal coordinates. A graphic representation of the normal coordinates in terms of the mass reduced cartesian coordinates calculated on the bases of two different potential functions in each symmetry species.

Table 4. 1,3,4-Thiadiazole. Calculated and observed isotopic frequency shifts (cm⁻¹).

requency		calc	ulated		observed
	a a	$a \ b$	b a	b b	
		2-13C-1,3,4-7	Thiadiazole		
ν_{7}	1.7	1.6	2.6	2.4	3 ± 1
v_8	3.6	3.6	3.1	3.0	2 ± 1
v 14	2.5	1.0	2.4	1.0	2 ± 0.5
v 15	5.4	6.3	5.4	6.3	6 ± 0.5
		3-15N-1,3,4-	Thiadiazole		
v_7	1.0	1.0	0.4	0.4	< 2
$ u_8^{\cdot} $	7.1	7.1	7.6	7.6	_
v_{14}	0.1	0.7	0.1	0.7	< 0.5
ν_{15}^{-1}	1.3	1.0	1.3	1.0	_
		1-34S-1,3,4-7	Thiadiazole		
ν_{7}	0	0	0	0	_
$v_{8}^{'}$	0	0	0	0	
v 14	0.1	1.4	0.1	1.4	_
v 15	2.0	1.2	2.0	1.2	_

The calculated frequency shifts are based on four different potential functions, each consisting of one set from A_2 species and one from B_2 species as indicated of the two small letters above the columns. The first refers to A_2 species the other to B_2 species.

data. The observed isotopic shifts of v_7 , v_8 , v_{14} , and v_{15} of V are found as 1 cm⁻¹, 7 cm⁻¹, 0 cm⁻¹, and 1 cm⁻¹, respectively. Unfortunately, they are all reproduced within the experimental error by the four different potential functions. The calculated isotopic shifts of the B_2 frequencies v_{14} and v_{15} of 1-34S-1,3,4-thiadiazole VI are also given in Table 4. However, the observed splitting of v_{14} in the vapor spectrum of I observed as 6 cm⁻¹ might as well be due to a "hot band". No splitting of v_{15} is observed in the spectrum of I.

Table 5. 1,3,4-Thiadiazole. Non-planar species. L-matrices (S = LQ) for the two sets of force constants in each symmetry species.

	,	Se	t <i>a</i>	Set	b	
		ν_7	$ u_{8}$	v_7	$ u_8$	
A_2	S T	$0.9829 \\ 0.0692$	$0.5661 \\ -0.9852$	$1.0526 \\ -0.0697$	$0.4226 \\ -0.9852$	
		v_{14}	v_{15}	v_{14}	v_{15}	
B_2	$_{\mathbf{T}}^{\mathbf{S}}$	$1.1202 \\ 0.2899$	$0.2230 \\ 0.6601$	$-0.5939 \\ 0.2897$	$0.9756 \\ 0.6602$	

Table 5 shows the L-matrix corresponding to the possible F-matrices and Fig. 2 shows the normal coordinates of I represented in terms of the mass reduced cartesian coordinates calculated from the possible F-matrices. It is seen, that set b of A_2 species and set a of B_2 species yields the most characteristic normal modes. That is ν_7 and ν_{14} are mainly CH deformation modes and ν_8 and ν_{15} are mainly ring deformation modes.

Table 6. 1,3,4-Thiadiazole and thiophene. Valence force constants (mdyn Å/rad²).

	1,3,4-Thiadiazole	Thiophene
$f_{{m \gamma}_{m lpha}{m \gamma}_{m lpha}}$	0.382	0.339
$f_{\nu,\nu,\nu'}$	0.023	0.046
$f_{{m \gamma}_{m lpha}{m \gamma}_{m eta}'} \ f_{{m \gamma}_{m eta}{m \gamma}_{m eta}}$	_	0.395
$f_{{m \gamma}_{m m \gamma}{m \gamma}_{m m \beta'}}$	-	-0.031
$F_{\mathrm{T}(\mathrm{A}_2)\mathrm{T}(\mathrm{A}_2)}^{'} \ F_{\mathrm{T}(\mathrm{B}_2)\mathrm{T}(\mathrm{B}_2)}^{'}$	$0.310 \\ 0.423 \\ 0.120$	$0.440 \\ 0.443 \\ 0.122$
$f_{\gamma_{\alpha} T(A_2)} = -f_{\gamma_{\alpha}' T(A_2)}$ $f_{\gamma_{\alpha} T(B_2)} = f_{\gamma_{\alpha}' T(B_2)}$	$0.120 \\ -0.160$	$0.123 \\ -0.169$
$f_{\gamma_{\beta} T(A_2)} = -f_{\gamma_{\beta}' T(A_2)}$	_	-0.179
$f_{\gamma_{\beta}\Gamma(\mathbf{B}_{2})} = f_{\gamma_{\beta}'\Gamma(\mathbf{B}_{2})}$		0.091

In thiophene the same difference between the two sets of force constants was observed. Orza, Rico and Biarge selected, somewhat arbitrarily, the set which gave the most characteristic normal coordinates as the more physical reliable. From the same point of view we shall select set b of the A_2 species and set a of the B_2 species as the potential function with physical significance. These sets, also, best reproduce the observed isotopic splittings of IV. It should, however, be emphasized, that the present experimental data are insufficient to select unambiguously the true potential function of the out-of-plane vibrations of 1,3,4-thiadiazole.

CONCLUSION

In spite of our difficulties in selecting the true potential function, the two symmetry force constants, $F_{\text{SS}(A_i)}$ and $F_{\text{SS}(B_i)}$ are unambiguously determined. This makes us able to determine the valence force constants $\gamma_{\gamma\gamma}$ and $f_{\gamma\gamma}$ attached to the CH-out-of-plane movement:

$$f_{yy} = 0.382 \text{ mdyn Å/rad}^2;$$
 $f_{yy}' = 0.023 \text{ mdyn Å/rad}^2$

Table 6 compares the selected potential function of 1,3,4-thiadiazole with that of thiophene calculated by Orza, Rico and Biarge.³ It is seen, that $f_{\gamma\gamma}$ for 1,3,4-thiadiazole is considerably greater than the corresponding force constant for the α -H atoms in thiophene. This seems to be in agreement with equivalent calculation for 1,3,4-oxadiazole and 1,2,5-oxadiazole to be published later.⁵

REFERENCES

- 1. Christensen, D. H. and Stroyer-Hansen, T. Spectrochim. Acta A 26 (1970) 2057.
- 2. Wilson, Decius and Cross, Molecular Vibrations, McGraw, New York 1955, sect. 4-1.
- 3. Orza, J. M., Rico, M. and Biarge, J. F. J. Mol. Spectry. 19 (1965) 188.
- 4. Bak, B., Nygaard, L., Pedersen, E. J. and Rastrup-Andersen, J. J. Mol. Spectry. 19 (1965) 283
- 5. Christensen, D. H. and Stroyer-Hansen, T. To be published.

Received May 15, 1971.