The Methyl-methyl Long Range Spin Coupling in Aromatic Compounds

SVEN-OLOF ALMQVIST, ARNE J. AASEN, BJARNE KIMLAND and CURT R. ENZELL

Research Department, Swedish Tobacco Company, S-10462 Stockholm, Sweden.

Our recent work on dimethylsubstituted aromatic compounds has made it desirable to determine the magnitude of methyl-methyl (interbenzyl) spin coupling constants for different substitution patterns.

In the preceding paper, the constitution of a naturally occurring methoxydimethylbenzofuran was determined partly by means of a detailed examination of long range coupling constants. The magnitude of the methyl-methyl coupling (0.5 Hz) excludes a meta relationship, as this coupling has invariably been reported to be less than 0.35 Hz, but is intermediate between the values of the ortho and para couplings in substituted xylenes: 4,6-dibromo-2,3-dimethylnitroline (+0.40 Hz) and 4,6-dibromo-2,5-dimethylnitroline (+0.62 Hz). However, in the case of the natural product, an ortho relationship could be deduced from other evidence.

Both smaller (2-carbomethoxy-5,6-dimethylbenzofuran: 0.37 Hz) and larger (2,3-dimethylbenzothiophene: 0.7 Hz; 2,3-dimethylthiophenes and 2,3-dimethylbenzofuran: 0.55 – 0.8 Hz) values are known for the ortho interbenzyl coupling. In the case of the para coupling, two further examples can be quoted: 7,12-dimethylbenz[a]anthracene (0.55 Hz) and p-methylbenzylbromide (0.4 Hz).

Theoretical calculations for the xylenes indicate that the π-electron contributions to all the interbenzyl couplings are of the same magnitude, i.e. 0.6 – 0.7 Hz. However, a smaller value (≈0.32 Hz) has also been calculated for the meta coupling. In order to clarify the structural problem and to permit comparisons with the theoretical values, we have determined the interbenzyl coupling constants of the isomeric xylenes and, in addition, some dimethylphenols and one dimethylnitroline.

The interbenzyl coupling constants were determined from (assumed) first order splittings of the methyl signals, when these were totally or partially decoupled from the aromatic protons. In the case of the xylenes, the 1H-satellites of the equivalent methyl signals were examined.

Irradiation exactly at the sharp signal due to the aromatic protons of neat p-xylene caused saturation of the spectrometer receiver. Dilution of the sample with carbon tetrachloride removed this effect.

In m-xylene, the 1H-satellites were single but slightly broadened peaks. This might be due to imperfect decoupling of the aromatic protons or to the existence of a finite methyl-methyl coupling of less than 0.3 Hz. The first possibility seems less probable as irradiation with different frequencies and amplitudes failed to produce a sharper line.

As seen from Table 1, the value of the para interbenzyl coupling is only slightly smaller than calculated. The magnitude of the observed meta coupling is consistent only with the smallest of the calculated values. The signs of these couplings were not determined, but are here assumed to be the same as those reported for the substituted xylenes.

The substituent effects appear to be small, but a meaningful discussion must await a larger number of examples. However, the ortho interbenzyl coupling appears to be very dependent on the bond order. The values for 2,3-dimethylthiophene (0.7 Hz) illustrate this point. Also, the ortho interbenzyl coupling in 5-methoxy-6,7-dimethylbenzofuran (0.5 Hz) is larger than that found between the 5 and 6 methyl groups in 2-carbomethoxy-5,6-dimethylbenzofuran. This is in agreement with the prediction that the π-bond order between C5 and C6 should be larger than that between C5 and C6.

The determination of the magnitude of an interbenzyl coupling can be of great help in elucidating the substitution patterns of aromatic compounds. Although, as in the case of benzylic coupling, it is not always possible to distinguish unequivocally between an ortho and a para relationship of the substituents, the interbenzyl couplings can provide decisive evidence when taken together with other information, e.g. results obtained by nuclear Overhauser effects (NOE).

Experimental. The PMR spectra were recorded at 31°C on a Varian HA-100D spectrometer, operated at 100 MHz in the frequency sweep mode. The audio frequencies were measured with a Hewlett-Packard 5512 A

Acta Chem. Scand. 25 (1971) No. 8
Table 1.

| Compound | R₁ | R₂ | R₃ | J_{CH₃-CH₃} (calc) | |J_{CH₃-CH₃}| (exptl.) |
|----------|----|----|----|-------------------|---|------------------|
| I | H | | | 0.63 | | 0.55 |
| II | OH | | | 0.6 | | |
| III | NH₂| | | 0.6 | | |
| IV | H | H | H | 0.74 | | 0.4 |
| V | OH | H | H | 0.4 | | |
| VI | H | O=C-CH₃| OH | | | 0.4 |
| VII | H | H | H | -0.60 | | |
| VIII | H | H | O=C-CH₃| OH | -0.32 | | <0.3 |

\[\text{CH}_3 \]

\[\text{CH}_3 \]

\[\text{CH}_3 \]

I–III IV–VI VII VIII

frequency counter. In the double resonance experiments, the modulation frequency was produced by a Muirhead D-896-B decade oscillator. Immediately before use the sample solutions (carbon tetrachloride or deuteriochloroform with ca. 3 % TMS added), were deaerated with argon for 5 min.

Acknowledgement. We are grateful to Prof. Nils Hollström for placing the NMR-spectrometer at our disposal.

Received October 5, 1971.