Solid Solution in the FeTi₂O₅— Ti₃O₅ System A. F. REID and J. C. WARD Division of Mineral Chemistry, CSIRO, P.O. Box 124, Port Melbourne, 3207. Australia The anosovite, or pseudobrookite, form of Ti₃O₅ was early recognised ¹ as being stabilised by Fe, Mg or Al. Subsequent investigations have explored the structural relationships between high (anosovite-like) and low-temperature Ti₂O₅.²⁻⁴ In a recent paper, Asbrink and Magnéli ⁵ showed that Ti₃O₅ forms continuous, solid solutions with a number of other pseudobrookites, particularly MgTi₂O₅, Al₂TiO₅ and, apparently, Fe₂TiO₅. Solid solution between FeTi₂O₅ and Fe₂TiO₅ has also been reported.⁶ Apparently, anomalous lattice parameter behaviour was observed 5 in the Fe₂TiO₅-Ti₃O₅ system, in which the c axis parameter, as well as the unit cell volume, increase to a maximum at the 50:50 composition, and then fall again as the composition is altered towards end member Ti₃O₅. The strong reducing power of Ti3+ even in Ti3O5 suggested that in this system the reaction ${\rm Ti^{3+} + Fe^{3+} \rightarrow Ti^{4+} + Fe^{2+}}$ might be taking place, and Mössbauer examination of the system has confirmed that this is so. At the 50:50 Fe₂TiO₅ – Ti₃O₅ composition, which corresponds to the formula FeTi₂O₅, namely that of ferrous pseudobrookite, the phase present after equilibration in sealed quartz tubes at 1200°C of a compacted mixture of Fe₂TiO₅ and Ti₃O₅ was indeed single phase ferrous pseudobrookite. The Mössbauer spectrum, with isomer shift of 1.328 ± 0.010 mm/sec relative to NBS standard sodium nitroprusside and quadrupole splitting of 3.271 ± 0.010 mm/sec, agrees moderately well with that published for an impure FeTi₂O₅ 7 and agrees with our own values of 1.329 ± 0.010 mm/sec and 3.167 ± 0.010 mm/sec determined on FeTi₂O₅, synthesised from a mixture of a reactive synthetic ilmenite ${\rm FeTi}_{\rm O_3}$ and anatase form ${\rm TiO}_2$. If the ${\rm FeTi}_2{\rm O}_5$ composition was not rapidly quenched from 1200°C the characteristic Mössbauer spectrum of FeTiO3 was also observed, in accordance with Haggerty and Lindsley's observation 8 that ferrous pseudobrookite disproportionates below 1140°C into a mixture of ilmenite and rutile. As the Ti₃O₅ content of the starting mixtures was increased beyond the FeTi₂O₅ composition, creating a solid solution of Ti₃O₅ in FeTi₂O₅, the tendency to disproportionation rapidly decreased. This paralleled the observations of Lindsley on the FeTi₂O₅-Fe₂TiO₅ system, and our own unpublished observations on the FeTi₂O₅ - MgTi₂O₅ system. There was no significant change in the Mössbauer parameters as Ti₃O₅ replaced FeTi₂O₅ in the pseudobrookite structure, with isomer shift 1.319 ± 0.010 mm/sec and quadrupole split 3.245 ± 0.010 mm/sec at the composition $Fe_{0.66}Ti_{2.33}O_5$. We conclude that across the solid solution series created by reacting Fe₂TiO₅ (ferric pseudobrookite) with Ti₂O₅, Ti³⁺ reduces Fe3+ to Fe2+ and two solid solution series are created. The first is a solution of Fe₂TiO₅ with FeTi₂O₅ containing no Ti³⁺ and the second, a solution of FeTi₂O₅ with Ti₃O₅ containing no Fe³⁺. For the first series, the lattice parameters obtained by Asbrink and Magnéli correspond well with those obtained by Akimoto et al. The midcomposition corresponds to pure ferrous pseudobrookite, which is now seen to form a continuous, solid solution series with $T_{13}O_5$. The lattice parameter increase as $T_{13}O_5$ reacts with $F_{02}T_{10}O_5$ is due to $F_{02}^{2+} + T_{14}^{14}$ replacing $2F_{03}^{03}$ in the structure, and the decrease in the $F_{02}T_{13}O_5$ region is due to $2T_{13}^{13}$ replacing $F_{02}^{03} + T_{13}^{14}$, the F_{02}^{03} in being by far the largest.9 It is interesting to note that Ti₃O₅ stabilizes FeTi₂O₅ in the same way as Ti₃O₅ in anosovite form is stabilised by what the present results show to be FeTi₂O₅. This stabilisation of end member pseudobrookite compositions by small additions of other pseudobrookites is a marked feature of this interesting family of compounds, and one which we are further exploring. - 1. Zhdanov, G. S. and Rusakov, A. A. Tr. Inst. Kristallog. Akad. Nauk SSSR 9 (1954) 165. - 2. Åsbrink, S. and Magnéli, A. Acta Chem. Scand. 11 (1957) 1606. - 3. Asbrink, S. and Magnéli, A. Acta Cryst. 12 (1959)575. - 4. Iwasaki, H., Bright, N. F. H. and Rowland, J. F. J. Less Common Metals 17 (1969) 99. - 5. Åsbrink, G. and Magnéli, A. Acta Chem. Scand. 21 (1967) 1977. - Akimoto, S., Nagata, T. and Katsura, T. Nature 179 (1957) 37. - Shirane, G., Cox, D. E. and Ruby, S. L. Phys. Rev. 125 (1962) 1158. - 8. Haggerty, S. E. and Lindsley, D. H. Carnegie Inst. Washington Yearb. 68 (1970) P. 247. - Shannon, R. D. and Prewitt, C. T. Acta Cryst. B 25 (1969) 925. Received March 17, 1971. ## The Vibrational Spectra of 1,1,2-Trichloropropionitrile T. TORGRIMSEN and P. KLÆBOE Department of Chemistry, University of Oslo, Oslo 3, Norway In order to prepare trichloro acrylonitrile we synthesized 1,1,2-trichloropropionitrile CH₂ClCCl₂CN (later called TCPN) as an intermediate product. We have previously reported the vibrational spectra of the related molecules 2-chloro- and 2-bromopropionitrile and found it of interest to study the conformational equilibrium of TCPN. The infrared, Raman and NMR data for this molecule will be reported in the present communication. Experimental. The sample of TCPN (b.p. 31° at 7 torr) was prepared by chlorinating acrylonitrile and the purity was checked by mass spectrometry and gas chromatography. The compound decomposed upon storage and was distilled immediately before the spectral recordings. However, a few impurity bands were detected in the low temperature infrared spectra. The infrared and Raman spectrometers and the experimental technique have been described. NMR spectra of TCPN dissolved in ${\rm CCl_4}$ and ${\rm CDCl_3}$ at 25° , -30° and -60° , using TMS as an internal standard were recorded with a Varian A 60 spectrometer. Results. The infrared spectra of TCPN as a liquid and as a crystalline solid at $ca. -70^{\circ}$ are shown in Fig. 1. A complete list of the observed Raman shifts and all except the weakest infrared bands are given in Table 1. Additional infrared spectra of TCPN dissolved in the unpolar CC1₄ and the highly polar CH₃CN were recorded. Significant variations in the intensities of certain infrared bands were observed, those which increase or decrease in polar solvents are denoted *i* or *d* in Table 1, respectively. A corresponding variation in the Raman intensities was difficult to observe for this molecule, since most of the appropriate bands were rather weak. The number of infrared and Raman bands observed for TCPN confirms that the molecule exists in different conformations in the liquid. These are undoubtedly the two staggered conformers having the symmetry C_s (pseudo trans) and C_1 (pseudo gauche). At least six infrared bands present in the liquid disappeared in the crystalline state. Among them, the bands at 653, 725, and 564 cm⁻¹ definitely were reduced in intensities with polar solvents (d) whereas no corresponding conclusions could be made for those at 1298, 402, and 276 cm⁻¹ because of interfering solvent bands. The C_1 -conformer has the higher dipole moment in TCPN and should therefore be stabilized in polar solvents. Accordingly, in agreement with succinonitrile and the 2-halo propionitriles 1,5 TCPN crystallized in the C_1 -conformer at low temperatures. Moreover, as roughly estimated from the relative infrared and Raman band intensities, the C_1 -conformer is much more abundant in the liquid TCPN at room temperature than the C_s -conformer. For 2-chloro- and 2-bromopropionitrile 1 on the other hand, the abundance of the two conformers appeared close to the statistical $C_1/C_s = 2$:I ratio in the liquid. Thus for TCPN as well as in the 1,1,2-trihaloethanes,⁶ the steric repulsion between the halogens favours the C_1 -conformer. Furthermore, a cyano group apparently favours orientation gauche to another cyano group 4 or to a halogen 1,5 in the crystal, also favouring the C_1 -conformer in the crystalline TCPN. The stronger infrared and Raman bands of TCPN are generally interpreted as fundamentals and are fitted with a description of the atomic motions in Table 1. Apart from the localized group frequencies: CH₂ stretch, CH₂ scissor, and C=N stretch, most of these motions probably involve several atoms. The strong bands at 1214 and 1000 cm⁻¹ are interpreted as overtones in Fermi resonance