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Rhonhof. Wir fiigten eine dreidimensionale
Interpolationsroutine nach dem Verfahren
von Dawson *° bei.

LSQ2 und LSQ2AN. Diese Programme
dienen zur Strukturfaktorenberechnung
und “‘least squares’’-Verfeinerung und be-
sitzen die Moglichkeit zur Rechnung mit
den Basisparametern einer starren Atom-
gruppe, die nach einem ‘full matrix”-
Verfahren verfeinert werden. Die Pro-
grammgrundform stammt von Scheringer.1!
Das schnellere Programm LSQ2 gestattet
nur die Benutzung von isotropen Tempera-
turfaktoren und erfordert fiir jede Raum-
gruppe ein spezielles Unterprogramm.
LSQ2AN ist allgemein geschrieben und er-
moglicht die Benutzung anisotroper Tem-
peraturfaktoren. Dispersionskorrektur und
Gewichtsanalysen werden durchgefiihrt.

ORFFE. Dieses Programm basiert auf
dem bekannten Programm von Busing,
Martin und Levy !* und dient zur weiteren
Auswertung von Lageparametern wund
thermischen Parametern und von deren
Fehlergrenzen. In Anlehnung an ein Pro-
gramm von C.-I. Bréndén, Uppsala, fiigten
wir eine ‘least squares’-Ebenen-Routine
ein.

Listen der einzelnen Programme kénnen
von uns angefordert werden.
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Integrated Solutions for a
Generalized System of First-order
Reactions
WILLIAM H. SACHS

Department of Organic Chemistry, University
of Umed, S-901 87 Umed, Sweden

ntegrated solutions to rate equations are

those generally used in some form to ex-
tract information from a series of measure-
ments in terms of a kinetic model. Ob-
taining this information is by no means
a trivial problem, since it has in practice
been difficult to develop reliable statistical
and numerical procedures which are ca-
pable of analyzing the complex equations
that often arise. For first-order systems
where the uncertainty in the measurement
of the dependent variable exceeds one part
promille, it has not been possible to pro-
ceed beyond an equation containing three
coefficients and two exponential terms.!

Y; =0y eXp(A,8;) + ¢4 exp(Asf;) + ¢35 ¢}

Thus integrated algebraic solutions to rate
equations for complex kinetic systems
would appear to be of little else than
academic interest. The concentrations of
the components of a system, however, are
rarely measured directly. Instead, some
quantity is observed that is generally
a linear transformation of these concentra-
tions,? and the expressions for the time
dependence of the concentrations in the
kinetic system may reduce to much simpler
equations involving a set of observagles
(e.g. NMR studies of H—D exchange at
CH,, under irreversible conditions 2). The
opposite may of course also occur. Thus if
one desires to know whether a given
kinetic model and experimental method of
measurement will produce one or more
equations which are feasible to treat
numerically, explicitly integrated solutions
to the rate equations of the model are
desirable. Explicit expressions are also
useful if one wishes to simulate the time
dependence of the system for a hypo-
thetical set of parameters.

Matrix methods have been found useful
for integrating the differential equations
for first-order kinetic systems,®* however,
the algebraic effort required with this
process may be enormous for fairly com-
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plex systems: assuming of course that
analytical solution is possible. A consider-
able improvement has been achieved by
using Laplace transforms within a matrix
formalism,® but the paper quoted con-
sidered only a sequence of first-order reac-
tions. Integrated expressions have also
been derived for a large number of first-
order kinematic systems using a Laplace-
Carson transform, however, no explicit
solution was developed for the general
case, owing in part to having overlooked
the advantages of matrix notation.®

The purpose of this work has been to
develop a general method for rapidly and
conveniently integrating the rate equa-
tions for systems of first-order reactions.
Application of Laplace transforms permits
the introduction of the initial conditions
from the outset and eliminates the need to
solve explicitly for the eigenvectors central
to the classical matrix formulation. An
exlplicit algebraic formula for the integrated
solutions to a general first-order system is
derived and expressed in matrix notation.
No table of inverse transformations is
required.

Matriz  formulation. For any system
obeying first-order kinetics it is possible to
abbreviate the rate equations in matrix
form.%* Thus one may write

A=KA 2

where A is an (m x 1) column vector formed
from the first-derivatives of the concentra-
tions A4, as functions of time, K is the (m x m)
matrix formed by the rate constants that
determine the extent, degree of branching,
reversibility, efc., of the system, and A
is an (mx1) column vector of the con-
centrations A4; of the components of the
system.

Laplace transforms ? are now applied to
both sides of eqn. (2)

«(A)=x(KA)

where the operation is understood to

occur for each element of A and KA,
and

©
«(4;)=L(p); =) dt exp(—pt) A;
° 1=1,m (3)
a(d4,) =pL(p); — 4%
A°; and L(p); are the initial concentration
and Laplace transform of component i,

respectively. p is a complex wvariable.
Making use of the linear property of the
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transformation and abbreviating (3) in
matrix form gives

pL(p)-A°=KL(p)
where A° and L(p) are (mx1) column
vectors. Solving for L(p), one obtains ®

L(p)= (P — K)™A® (4)

P is the diagonal matrix pl. (I is the unit
matrix). An explicit expression for the
+th element of L(p) may be obtained from
determinants as

z ( - l)@ iMQiAog .
(p)1 o 1( l P K I ) ? 17 ( )

where M, is the minor formed from
IP—K| by omitting the gth row and the
sth column.

The inverse Laplace transforms are
found from Bromwich’s integral formula
and the residue theorem.”

“H(L(p)) = 4; = (2ny/ = 1) dp exp(pt)
(P —K)AY, ()

where the contour C is chosen to the right
of all singularities in {(P—K)™A%;. In
practice, the integral in (6) is evaluated as
a closed integral over a contour C’. The
residue theorem, the validity of whose ap-
plication is guaranteed by the fact that
L(p); in (5) will always be the ratio of two
polynomials R/S in p, where R is always
of degree less than §, gives for the closed
integral

A;=sum of residues of exp(pt)
{(P—K)7A%; M

evaluated at the poles p=4;, k=1,m. For
nondegenerate values of 4,

residue = plil?k {exp(pt)

(p—2) {(P—K)'A%3} (8)
Combining eqns. (5,7,8) one arrives at an
explicit algebraic formula for the time
dependence of A4;

m
A;= 3 lim {eXP(pt)(p—lk)
k=1 p—>Aik
2= ne+Meia%|) sy )
e=1 [P—K]| ’

which requires only the evaluation of the
roots Az of the polynomial |P—K| (equiv-
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alent to the eigenvalues of K) and the in-
verse of (P—K) shown above in deter-
minantal form. The factor (p— ;) cancels
an identical term in |P—K| when this
polynomial is in the factorized form neces-
sary to obtain the roots A;. By defining the
operator Q

lim 0
P4
0 lim 0
Q= P>y
0 0
. . lim
P44y

eqn. (9) may be written in matrix notation
as
A={Q(P -1 {(P - K)TAUHE

where A is a diagonal matrix formed from
the roots 4;, E the column vector,

(10)

oxp(A,t)
exp(Aqt)

exp(Ant)

and 1, a column vector of 1’s. The symbol
“t” indicates the transpose of a matrix.

A more general solution for A; which
takes into account poss1ble degeneracy of
the roots 4; is given by ?

m— (r—s)

dﬂ—l
k =1 p—»u (n—l)! dp™t

[GXP(Pt) ®— 4 {(P-K “A"}]] i=1

Ai=
(11)

where n is the degeneracy of the Axth root,
s the number of distinguishable sets of

degenerate roots, and T the sum of all n
greater than or equal to two.

In practical applications, considerable
effort is saved by noting that often only
one component A°% is nonzero: only one
column of (P—K)™? need therefore be
evaluated, and the summation sign in (5)
is superfluous.

Bergson has derived the time dependence
of A from matrix algebra as

A={(CA0)E (12)

where the subscript d indicates that the
qua,ntlty in parentheses is a diagonal

matrix.? C and the A, of E have been deter-
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{nined from an associated eigenvalue prob-
em
KC=C¢4

where € has been evaluated from C in such
a way that its diagonal elements are unity.

Generally, requires the solution of
m (m xm) linearly dependent systems of
simultaneous equations, or equivalently,
m {(m—1)x (m—1)} linearly independent
systems of equations. The correspondence
between (10) and (12), however, gives

¢(Ea0=

QP — A)1{(P —K) A%} (13)

If for some reason the algebraic form of ¢
is required, then the complete eigenvalue
problem must be solved in due fashion.

Linear transformations of the concentra-
tions A in terms of a set of observables?
may be included in the formulation of
eqn. (10)
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