observed. Similarly, CH₃CH₂OC(=S)N-(CH₃)₂ and (CH₃)₂CHO(=S)N(CH₃)₂ were heated together for 5 h at 160°C without the formation of any new products.

Finally, S-(methoxythiocarbonyl)thiohydroxylamine was decomposed in the presence of ¹⁵N labelled O-ethylthiocarbamate (30% ²⁰⁵N). Again, formation of ¹⁵N labelled S-(methoxythiocarbonyl)thiohydroxylamine or ²⁰⁵N labelled O-methylthiocarbamate was not observed.

From these experiments we conclude that, at room temperature, the decomposition of S-(alkoxythiocarbonyl)thiohydroxylamines is completely intermolecular.

The mass spectra were obtained on a double focusing mass spectrometer, type AEI-MS 902.

Received November 20, 1970.

Synthesis of 5-Formyl-2-furansulfonic Acid Sodium Salt from Endialone

GERT JANSEN, JØRGEN LEI and
NIELS CLAUSON-KAAS

28 Rugmarken, DK-3520 Farum, Denmark

The title compound (I) has previously been prepared by Ivanov and Yankov (cf. also Refs. 2, 3) by sulfonation of furfuralacetate with Baumgarten's reagent (sulfur trioxide-pyridine) (yield 37%). It has now been found that I is formed from endialone (5-formyl-3-oxo-gluconaldehyde) and sodium hydrogen sulfite (cf. Ref. 5). This new synthesis is simpler and cheaper than the sulfonation reaction.

\[
\text{OCH} \quad \text{CO} \quad \text{CHO} \quad + \quad \text{NaHSO}_3 \quad 50\%
\]

\[
\text{NaO}_3\text{S} \quad \text{CHO} \quad + \quad \text{H}_2\text{O}
\]

Experimental. Sodium hydrogen sulfite (10.4 g, 0.100 mol) was added to a molar solution of endialone of pH 2.0 and 0°C (100 ml, 0.100 mol), prepared as described previously. The mixture was stirred at room temperature for 30 min. The resulting clear, slightly yellow solution was heated to 60°C over a period of 30 min and then kept at this temperature for 60 min. About 5 min after the temperature of 60°C had been reached, crystals of a sesquihydrate of I began to separate. The suspension was cooled to 15°C and the crystals isolated by filtration. The wet cake was washed on the filter with ethanol-water (1:1) (20 ml), ethanol (20 ml), and ether (20 ml), and dried (20°C, 18 h). 11.2 g (50%) of I sesquihydrate was obtained, m.p. > 250°C (decomp.). (Found: C 28.6; H 3.0; S 14.0; ashes from CH-determination 31.9. Calc. for C₅H₇NaO₄S (252.2): C 28.7; H 2.7; S 14.3; 0.5 Na₂SO₄ 31.6). Very rapid Karl Fischer titrations of water gave 12.7% of water (calc. for 1.5 H₂O: 12.0%). Slower titrations showed up to 17.9% of water, indicating formation of water due to acetalization of the aldehyde group during titration.

Drying of the sesquihydrate at 110°C to constant weight gave anhydrous III as a slightly hygroscopic product. (Found: C 30.1; H 1.9; S 15.4; ashes 35.4. Calc. for C₅H₇NaO₄S (198.1): C 30.3; H 1.5; S 16.2; 0.5 Na₂SO₄ 35.9.) The ¹H NMR spectrum of the product agreed with the proposed structure.

5. Swiss Appl. 11240/69 to Geigy, Basel.

Received December 14, 1970.

Acta Chem. Scand. 25 (1971) No. 1